
AOV-graph Modeling to the HealthWatcher
Author: Lyrene Fernandes
Version: 2.0 Data: 23/September/2006

Health Watcher’s description
The Health Watcher’s goals are collect and control the complaints and notifications, and
provide important information to the people about the Health System. The citizen can access
the system through the internet or dialing 1520, making his/her complaint or asking
information about the health services. In the event of a complaint, it will be registered on the
system and addressed by a specific department which will be able to carry out the procedure
and return an answer when the analysis is accomplished. This solution will be registered on
the system, being available for queries. The product will be put to public usage in kiosks in
several strategic points, on which the citizen itself will make its complaints and information
requests.

Index

1. Activities .. 1
2. Glossary.. 2
3. AOV-graph... 3

3.1 AOV-graph before composition... 4
3.1.1 Descriptions of Crosscutting Relationships .. 6

3.2 AOV-graph after composition.. 7
4 Views of the AOV-graph .. 9

4.1 Colored AOV-graph... 9
4.2 Hierarchy of softgoals, goals and tasks.. 11

4.2.1 Model: Manage [health service].. 11
4.2.2 Model: Persistence .. 12
4.2.3 Model: Reliability ... 12
4.2.4 Model: Security ... 12
4.2.5 Model: Performance.. 13
4.2.6 Model: Usability.. 13

5. Evaluating the HealthWatcher and the AOV-graph... 13

1. Activities
This modeling was made as follows: Firstly I read the HealthWatcher’s documentation.
After that, I modeled a first version of the v-graph using the structure of the
documentation. Next, I specified this first version in XML and added some concerns
reused from other case studies, such as Persistence, Security, Realiability and Usability.

After that I had to change them in order to attend the Health Watcher System, including
and excluding some goals, softgoals and tasks. Therefore, I analyzed the relationships in
V-graph and identified crosscutting relationships. Next, I specified these crosscutting
relationships in XML, applied the composition mechanism and generated some views
(automatically using XLST). These views were used in order to help me to identify
mistakes or trade-offs, so the cycle Specify in XML Composition Generate views
Analyze views happened many times. When I found a stable version I begun to format the
documentation, but some changes in modeling again happened. In summary, these
activities are listed below:
 Reading the HW’s documentation (30 minutes)
 Modeling the HW using V-graph – Identifying goals, softgoals and tasks, and the

relationships (55 minutes writing from scratch plus 55 minutes rewriting in XML)
 Analyzing the relationships and identifying crosscutting relationships
 Specifying the crosscutting relationships (in XML)
 Investigating trade-offs and early aspects interaction

 Formatting the specification document and fixing some mistakes

Date Start Stop Total Number

of people
Activity

05/Sept/2006
06/Sept/2006

21:20
18:00

22:15
18:55

110 m 1 Modeling the HW using V-graph –
Identifying goals, softgoals and tasks,
and the relationships

11/Sept/2006 10:00 10:45 45 m 1 Analyzing the relationships and
identifying crosscutting relationships
(the first version)

11/Sept/2006 11:55 12:40 45 m 1 Specifying the crosscutting
relationships (the first version, in
XML)

11/Sept/2006
12/Sept/2006

14:30
20:00

15:15
22:00

165 m

1 Investigating trade-offs and early
aspects interaction

12/Sept/2006
13/Sept/2006

22:00
9:30

23:55
11:00

205 m

1 Formatting the specification
document and fixing some mistakes

Table 1 - LOG OF ACTIVITIES

2. Glossary

Complaint information
A complaint information consists on these data: Date; Complaint data: description
(mandatory) and observations (optional); Complainer data: name, street, complement, district,
city, state/province, zip code, telephone number and e-mail (All these information are
optional); Complaint situation (mandatory), which might be OPENED, SUSPENDED or
CLOSED (in the event of a registration, its state must be OPENED);

After an analysis has been done, a complaint has also: technical analysis; analysis date;
employee that made the analysis.
Animal Complaint – DVA
is related to: Animals apprehension; Control of vectors (rodents, scorpions, bats, etc.);
Diseases related to mosquitos (dengue, filariose); Animals maltreatment.
In addition to complaint information an animal complaint has its specific ones. They are:
Kind of animal (mandatory), amount of animals (mandatory), disturb date (mandatory);
Disturb location data: street, complement, district, city, state/province, zip code and telephone
number. All these information are optional.
Food Complaint – DVISA
is related to: cases where it is suspicious the ingestion of infected food.
In addition to complaint information an animal complaint has its specific ones. They are:
Victim's name (mandatory); Victim's data: street, complement, district, city (or closest one),
state/province, zip code and telephone number (All optional); Amount of people who ate the
food, amount of sick people, amount of people who were sent to a hospital and amount of
deceased people (All mandatory); Location where the patients were treated, suspicious meal
(All optional)
Diverse Complaint - DVISA
is related to: Cases related to several reasons, which are not mentioned above (restaurants
with hygiene problems, leaking sewerage, suspicious water transporting trucks, etc.).
In addition to complaint information an animal complaint has its specific ones. They are: Age
(mandatory), scholar level (optional), occupation (optional); Street, complement, district,
city, state/province, zip code and telephone number of the closest location to the complaint
location (All optional)
Health unit
consists on: unit code, unit description
Specialty
consists on: code and description
Health unit / Specialty
consists on: health unit and specialty
Employee
consists on: login, name and password
Type of disease
consists on: code, name, description, symptom and duration
Symptom
consists on: code and description
Type of disease / Symptom
consists on: type of disease and symptom

3. AOV-graph
This AOV-graph modeling consists on six goals models: Health watcher, Persistence,
Realiability, Security, Usability and Performance. Some statistics about these goals models
are in Table 2. Consider that the number of crosscutting relationships represents the number
of specifications (of crosscutting relationship); in figures it is only possible see the number of

crosscutting links (before composition) and contributions (after composition). Therefore, 5
crosscutting relationships were represented by 11 links before composition, and after
composition these 5 crosscutting relationships were represented by 38 contributions. Before
composition, there were 84 relationships (crosscutting links + contributions) and after
composition this quantity increased to 111 (contributions).

Elements Quantity before composition Quantity after composition
Goals 10 10
Tasks 70 77

Softgoals 11 11
Crosscutting relationships 5 5

Links crosscutting 11 38
Contributions 73+11=84 111
Correlations 11 11

Types 29 29
Topics 45 51

Attributes 0 0

Table 2 - Statistics of AOV-graph modeling

3.1 AOV-graph before composition
Figure 1 presents the AOV-graph modeling: each goal model is separated and the bold
relationships represent the crosscutting links. Consider this legend to the models.

Softmeta

Tarefa

Meta

Contribuição

Correlação

Transversal

Figure 1 – AOV-graph of the Health Watcher System before composition

3.1.1 Descriptions of Crosscutting Relationships

1 - Source: Persistence in [DB]

 crosscutting {
 source = Persistence in [DB]
 pointcut P15.1: include(Register.*; task; name) and not include(Register [information])
 pointcut P15.2: include(Configurability)
 advice (around): P15.1 { (Make register operation; and)}

intertype declaration (element): P15.2 {
 task = (Set [DB]; make) {
 task = (Select [Microsoft Access]; or) {}
 task = (Select [Oracle]; or) {}
 task = (Select [MySQL]; or) {} } }

 }

This crosscutting relationship is defined by two pointcuts, an advice and an intertype: the first pointcut
uses regular expression, matching all tasks with Register (they are: (Register [kind], [date], [time] of
the [complaint]) (Register [complaint information]) (Register [conclusion] and [employee] who gave
conclusion) (Register [health unit]) (Register [speacialty]) (Register [employee]) (Register [disease])
(Register [symptom])), but not (Register [information]) because in this case Register information is
only a way of group tasks; the second pointcut is only defined by Configurability; in first pointcut is
added the Make register operation task defined in advice, this task is a task of Persistence in [DB]; the
second pointcut is affected by a new task (Set [DB]), using intertype this task is added in source point
(persistence in DB) and in the pointcut (as a decomposition).

2 - Source: Detect [exception]

 crosscutting {
 source = Detect [exception]
 pointcut PC5.3: include(Persistence in [DB])
 pointcut PC5.4: include(Authentication by Login)
 pointcut PC5.5: include(Availability)
 intertype declaration (element): PC5.3 {task = (Detect [persistence exception]; and) {} }
 intertype declaration (element): PC5.4 {task = (Detect [authentication exception]; and) {} }
 intertype declaration (element): PC5.5 {task = (Detect [availability exception]; and) {} }

 }

This crosscutting relationship has three pointcuts and one intertype for each one of them. In this case is
the new tasks Detect [persistence exception], Detect [authentication exception] and Detect [availability
exception] are added in Detect [exception], and in each pointcut is added the associated task.

3 - Source: Authentication

 crosscutting {
 source = Authentication
 pointcut P9.3.1: include(Update [complaint]) and include(Register [information])
 advice (around): P9.3.1 { (Authentication by Login; and)}
 }

Authentication by login affect two points (Update [complaint] and (Register [information]). The sense
of around is, for example: Authentication by login is necessary to satisfy Update [complaint].

4 - Source: Cryptography

 crosscutting {
source = Cryptography

 pointcut PC9.3.5.1: include(Authentication by Login)
 advice (around): PC9.3.5.1 {(Symmetric cryptography; and)}
 }

Cryptography only affects one point (Authentication by login). This crosscutting relationship was
defined because other points can easily appear, but it can be excluded.

5 - Source: Usability [user interface]

crosscutting {
 source = Usability [user interface]
 pointcut PC3.2: include(Select [kind of complaint]) and include(Select [specialty]) and
include(Select [unit])
 pointcut PC3.3: include(Request.*; task; name)
 pointcut PC3.4: include(Show.*; task; name)
 advice (around): PC3.2 {(Use [drop down box]; and)}
 advice (around): PC3.3 {(Show [specific form]; and)}
 advice (around): PC3.4 {(Show [information] friendly; and)}
 }

This crosscutting relationship has two pointcuts defined by regular expression (Request.* ={ (Request
[complaint information]) (Request [complaint code]) (Request [conclusion])} and Show.*={ (Show
[complaint code]) (Show [complaint information]) (Show [health units] take care of a specific
[specialty]) (Show [specialties] of a [health unit]) (Show [disease]) (Show [pop up window]) (Show
[specific form]) }). Respectively, this pointcuts are affected by Show [specific form] and Show
[information] friendly. The pointcut PC3.2 is affected by Use [drop down box] task.

3.2 AOV-graph after composition
Figure 2 – AOV-graph of the Health Watcher System after composition

4 Views of the AOV-graph
4.1 Colored AOV-graph

Figure 3 – AOV-graph of the Health Watcher System before composition

Figure 4 – AOV-graph of the Health Watcher System after composition

4.2 Hierarchy of softgoals, goals and tasks
In bold, we explicit new decompositions that were added by the composition.

4.2.1 Model: Manage [health service]

o Make [health service] better
o Manage [health service]

 Manage [complaints] and [notifications]
 Specify [complaint]

 Select [kind of complaint]
 Select [diverse complaint]
 Select [food complaint]
 Select [animal complaint]
 Use [drop down box]

 Register [kind], [date], [time] of the [complaint]
 Make register operation

 Request [complaint information]
 Show [specific form]

 Register [complaint information]
 Make register operation

 Show [complaint code]
 Show [information] friendly

 Update [complaint]
 Request [complaint code]

 Show [specific form]
 Show [complaint information]

 Show [information] friendly
 Request [conclusion]

 Show [specific form]
 Register [conclusion] and [employee] who gave conclusion

 Make register operation
 Authentication by Login

 Make [information on health service] available
 Register [information]

 Register [health unit]
 Make register operation

 Register [speacialty]
 Make register operation

 Register [employee]
 Make register operation

 Register [disease]
 Make register operation

 Register [symptom]
 Make register operation

 Authentication by Login
 Provide [information]

 Provide [health guide information]
 Show [health units] take care of a specific [specialty]

 Select [specialty]
 Use [drop down box]

 Show [information] friendly
 Show [specialties] of a [health unit]

 Select [unit]

 Use [drop down box]
 Show [information] friendly

 Provide [diverse information]
 Provide [complaint information]

 Request [complaint code]
 Show [complaint information]

 Provide [diseases]
 Select [disease]
 Show [disease]

 Show [information] friendly

4.2.2 Model: Persistence

• Persistence
o Persistence in [DB]

 Verify if [DB] is connected
 Initiate [DB]
 Connect [DB]
 Make register operation

 Include [data]
 Select [data]
 Delete [data]
 Update [data]

 Disconnect [DB]
 Set [DB]

 Select [Microsoft Access]
 Select [Oracle]
 Select [MySQL]

 Detect [persistence exception]

4.2.3 Model: Reliability

• Reliability
• Handling [exception]

o Detect [exception]
 Detect [persistence exception]
 Detect [authentication exception]
 Detect [availability exception]

o Apply [dealer]

4.2.4 Model: Security

• Security
o Availability

 Detect [availability exception]
• Authentication

o Authentication by Login
 Detect [authentication exception]
 Symmetric cryptography

o Validate [data]
 Compare [data] with [credentials]

o Authorization
 Select [permissions] to [data]

 Set [permissions]
 Control [access]

 Restrict [access] to [functions]
 Restrict [access] to [data]

• Cryptography
o Assymmetric cryptography
o Symmetric cryptography
o Make [cryptography operations]

 Encrypt [data]
 Decrypt [data]

4.2.5 Model: Performance

• Performance
• Response time must not exceed 5 seconds
• Capability to handle 20 simultaneous users

4.2.6 Model: Usability

• Usability
o Usability [documentation]

 Usability [help] available on user interface
o Usability [user interface]

 Accessibility
 Access [functionality] with mouse
 Access [functionality] with keyboard

 Use [check box]
 Use [drop down box]
 Show [pop up window]

 Show [information] friendly
 Show [specific form]

 Show [information] friendly
 Show [information] friendly

• Configurability
o Set [DB]

5. Evaluating the HealthWatcher and the AOV-graph
We think the HealthWatcher is a good example, but it would be better if other functionalities
were added in order to provide flexibility for exploring crosscutting concerns come from
functional requirements (specific from the health domain). We only modeled
HealthWatcher’s AOV-graph based on the functionalities presented in Use Case
Specification, and we only found the traditional crosscutting concerns, those come from
Persistence, Usability, Security, Realiability.
With the AOV-graph was possible to model the HealthWatcher system, but some information
is not properly captured, such as data types, actors for each goal/task and sequence of tasks:

• It is possible to refine the modeling in order to add more information about data types,
but it can make the model very big and unmanageable, thus we prefer to use a glossary
in order to define the information about the data types.

• It is possible to add the actors to tasks and goals by using intertype declarations (with
attribute type) and would be necessary to define a new view showing these actors.

• It is possible to generate a scenarios view in order to show sequences of activities, but
this view can only be generated by using the sequence of tasks defined in XML
language.

Some advantages on using AOV-graph:
• The AOV-graph represents very well the interactions between functional and non-

functional requirements.
• Using AOV-graph it is possible to generate different views, such as: partial views of

the AOV-graph, scenarios, class diagram, entity-relationship, list of requirements.
Some drawbacks on using AOV-graph:

• The AOV-graph models tend to increase a lot (graphically), making the visualization
(and printing) difficult. In these cases it is essential to have partial views of AOV-
graph.

• There are no tools available for edition of AOV-graphs (XML) and for edition of the
created views. Although, there are a set of XSLTs to generate views, they are not
integrated and the transformations rules need to be improved. It is also necessary a
semantic verification tool.

