Lightweight Testing for
Configurable Systems

Sabrina Souto
[sfs@cin.ufpe.br]

Informatics Center
Federal University of Pernambuco

Advised by:
Marcelo d’Amorim

[damorim@cin.ufpe.br]

YE LUINIVERSLTY 0Ok

TEXAS

AT AUSTI

I

Configurable System

e System behavior depends on configuration
variables. Examples:

0000000000

W\

MySOL.

ORACLE
BERKELEY DB

Basic Terminology

* Feature
— Distinct functionality

* Configuration
— A selection of features

e Feature Model

— Description of a set of acceptable configurations of
a system

(Not always documented)

lllustrative Example: Notepad

(|2 Untitled - JAVA(TM) Notepad (sl o=l b class Notepad ({
File Help void toolBar() {

[;<;>IEI if (T) {

Hello|

}

NOTEPAD

‘//////:;;;7Yi;;i\\\\\\\m void test() {

BASE MENUB2R || TOOLBAR || WORDCOUNT) toolBar () ;

MV T }

Forbidden configurations: MTW=001, MTW=000

Testing Configurable
Systems is Challenging!

Problem 1: High Dimensionality

WWWw.groupon.com

170+ boolean variables
2170+ configurations

The same test needs to be run
against many configurations
E.g. The same Ruby on Rails test for

Groupon needs to be run against all
configurations

Problem 2: Lack of Feature Models

* Feature Models are important!
 But often are not documented

A — One reason: Features emerge and
MV ~ R submerge in short periods under
i, highly-dynamic environments
ORACLE
BERKELEY DB

Problem 1
High Dimensionality

Our Solution
-- SPLat --

Kim et al., SPLat: Lightweight Dynamic... ESEC/FSE’13: 257-267

Existing Techniques

 Sampling
[Cohen et al. ISSTA’07], [Perrouin et al., ICST’10],
[Garvin and Cohen ISSRE’11], [Song et al. ICSE’12],
[Shi et al. FASE’12]
— Heuristically sample the configuration space
e Fast! But can miss errors or produce redundant tests

* Exhaustive
[d’Amorim et al. ISSTA’07], [Rhein et al. JPF’11],
[Kim et al. AOSD’11], [Kastner et al. FOSD’12],
[Kim et al. ISSRE’12], [Apel et al. ICSE’13]
— Static/dynamic analysis for pruning redundant configurations
» Safe! But slow and often doesn’t scale

Proposal: SPLat

* Observation
— Each test exercises a small portion of code

* Proposal

— Only consider...
* Features dynamically reachable from a test
* Configurations consistent with feature model

* Assumptions
— Feature model exists
— Test can be run on multiple configurations

Insight

* Only reachable features class Notepad {
— E.g. If Tis false, combinations void toolBar() f{
of W and M vyield identical 1£(T) {

program traces 1f(w)

* SPLat produces: }

— T=false, W=?, M="
— T=true, W=false, M="

— T=true, W=true, M=7
void test () {

toolBar () ;
* Only consistent }
configurations are explored }
— When T is false, M must be Constraint: T v M

true

SPLat in a Nutshell

. Determine reachable configurations during
execution

. Set feature value when feature is encountered
. Keep a stack of encountered features

. Repeat until explore all legal combinations of
encountered features

15t run
Stack

T false

29 run

W | false

T true

3rd run

W | true

T true

4th run

W | true

T true

SPLat on Notepad

Configurations Executed

TWM= <false, ?, true>
(M=true due to TvM)

TWM-=<true, false, ?>

TWM-=<true, true, ?>

Nothing to execute

class Notepad {
void toolBar () {

if(T) {

L£ (W)

void test () {

}
}

toolBar () ;

Constraint: T v M

Why is SPLat Lightweight?

* Inexpensive instrumentation
— Only feature variables need instrumentation

* Uses efficient SAT solver for checking path
feasibility
— We used SAT4)

Java Evaluation: Setup

* Questions
— How does SPLat compares against?

* Conventional execution: running every configuration
 Static analysis [Kim et al., AOSD’11]

— What is the overhead of SPLat?

* Experiment

— 10 SPLs previously used
e 5-25 features, 20—-192 configurations, 580-14,480 LOC

— Tests for exercising low, medium, and high number of
reachable configurations

Java Evaluation: Results

SPLat is faster than conventional execution 83%
of the time

SPLat is faster than static analysis all the time and
up to 2 orders of magnitude faster

Overhead

— |dealTime: Time of ideal execution
— SPLatTime: Time of SPLat execution

— Overhead = SPLatTime - IdealTime
* <50% overhead in 73% of tests, small for long-running tests

Groupon Evaluation: Setup

Saint Petersburg a

GROUPON -

e How well does SPLat scale?

CTAHBIE

. NAPTHEPOM ﬂ’
@ Shares of the day o EXperIment

All Medicine Services and cars Beauty Sporl - RUby on RaiIS
implementation of SPLat

— Applied against the
Delivery of dishes from restaurants "Yakitoriya" and G rou po N COd e ba se
MoJo. Discount 50%
e 4.5 years of work from 250+
engineers

e 400K+ LOC (171K LOC of
server side, 231K lines of
tests)

e 19K tests

e S * 170 boolean feature
variables (up to 2179)
100 rubles. @

Food & Drink - 17

17

Groupon Evaluation: Results

14000 14000
12000 12000
10000 10000
8000 NO Of 8000
tests
6000 6000
4000 4000
2000 | 2000
0 . 1) O‘Ih.... ______
1 2 3 45 6 7 8 9 101112 1314 1516 17+ 0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

No. of configurations executed No. of features accessed

* Most tests exercise small number of
features (<170) and configurations (<2179)

18

Problem 2
Lack of Feature Models

Our Solution
-- SPLif --

Paper under submission

BERKELEY DB

Problem Reminder

* Feature Models are important
but often not documented.

A False positives!
A test can fail due to a

configuration that is not in the

(missing) model is meaningless.

20

Existing Reverse Engineering

Techniques
Static Analysis
She et al. ICSE’11]

nformation Retrieval
Alves et al. SPLC’'08], [Davril et al. FSE'13]

Evolutionary Search
[Lopez-Herrejon et al. SSBSE’13]

Custom solutions
[Haslinger et al. FASE’13]

No prior work builds on
tests and their executions

Basic Terminology

e Configuration
— A selection of features

* Each feature can assume 3 values:
— 0: the feature is disabled (=false)
— 1: the feature is enabled (=true)
— ?: the feature has no value yet (=unknown)

Basic Terminology

e Partial vs. Complete Configuration

MTW=07?1 (partial or incomplete)
MTW=010 (complete)

Recall Notepad Features:
Menubar, Toolbar, and
Wordcount

* Consistent vs. Inconsistent Configuration

MTW=07?1 (consistent) Recall Notepad Constraint:
MTW=00? (inconsistent) M v T (Undocumented)

Insight

* Run each test against many products, by using a
modified version of SPLat

* Use the profile of passing and failing runs to help
developers prioritize their inspection of failures
in order to distinguish

— Failures in products, due to invalid combinations of
features

— Failures in the code, e.g. a bug.

Proposal: SPLif

* Revise the feature model during Testing

— Ask the user to label configurations
* If configuration is consistent, inspect the test!

* Assumptions
— User is aware about many feature relationships

— User makes no mistake

SPLif Example (1 test)

class Notepad {

* Configurations (MTW): void toolBar() |
i£(T) {
111 1£ (W)
011 B
110 if (M) { ... }
010 |
107
00? " toolnar)
)
)

SPLif Example (1 test)

e Configurations (MTW):

111 Execution of
011 ¢ |some tests fails!
110

010

10? %

00? %

SPLif Example (1 test)

e Configurations (MTW):

Select failing
011 ¢ | configurations

107 %
00? %

SPLif Example (1 test)

e Configurations (MTW):

00? Rank
107? configurations
011 for inspection

SPLif Example (1 test)
e Configurations (MTW):

OO? Inconsistent!

SPLif Example (1 test)
e Configurations (MTW):

OO? Inconsistent!

Partial Feature Model (PFM) = (U c),
where c;is an inconsistent configuration

In this case c=(!M A !T)and PFM=
P('M A I'T)

'"M v !'IT

MV T

SPLif Example (1 test)

e Configurations (MTW):

00?

Configurations that violate this
constraint will not be inspected!

L=

MvVv T

SPLif Example (1 test)
e Configurations (MTW):

Partial Feature Model:

10? Consistent MV T
The test failed on a configuration

where no inconsistency has been
observed. Tester should inspect!

SPLif Example (1 test)
e Configurations (MTW):

Partial Feature Model:
Mv T

0171 | consistent /

Feature model obtained is
complete in this case. But that is
not always the case.

SPL[at,if] collaborators

Darko Marinov
Divya Gopinath
Don Batory
Marcelo d’Amorim
Paulo Barros

Peter Kim

Sabrina Souto
Sarfraz Khurshid

SEIF Brazil Workshop 2013, November 26

Configurable System

Lightweight Testing for * System behavior depends on
Configurable Systems configuration variables. Examples:
Marcelo d’Amorim m
Federal University of Pernambuco My JL
ORACLE

ddd

BERKELEY DB

J@ TExAS

AT AUSTIN

Problem 1: High Dimensionality Problem 2: Lack of Feature Models

170+ boolean variables

5 . * Feature Models are important!
GCC) |

170+ H H
2 configurations e But often are not documented

N

The same test needs to be run \Q\ — One reason: Features emerge and

against many configurations MVf 0\ s sybmerge in S_hort periods under
E.g. The same Ruby on Rails test for ORACLé highly-dynamic environments
Groupon needs to be run against all BERKELEY DB

configurations
www.groupon.com

--SPLat-- --SPLif--

