SISTEMAS DE TEMPO REAL

Escalonamento de tarefas aperiódicas (Aperiodic task scheduling in real-time systems)

Nesta apresentação...

- Tarefas periódicas X tarefas aperiódicas;
- Servidores de prioridade fixa:
 - Background Server (BS);
 - Polling Server (PS);
 - Deferrable Server (DS);
 - Priority Exchange Server (PES);
 - Sporadic Server (SS);

Escalonamento de tarefas aperiódicas

TAREFAS PERIÓDICAS X TAREFAS APERIÓDICAS

Tarefas periódicas X tarefas aperiódicas

- Aplicações de tempo real podem envolver, de um modo geral, tanto tarefas periódicas, como tarefas aperiódicas;
- Tarefas periódicas:
 - São ditas críticas;
 - Necessitam de garantias em tempo de projeto para as mais diversas situações, inclusive as de pior caso;
 - Adequam-se à situações onde é necessária a produção regular e constante de um dado valor ou atuação;

Tarefas periódicas X tarefas aperiódicas

- Tarefas aperiódicas:
 - Ao contrário das tarefas periódicas, podem ter ou não o envolvimento de requisitos temporais, sejam eles críticos, ou não críticos;
- Como o escalonamento de tarefas híbridas é realizado?
 - Algoritmos de tarefa periódica, estendido à carga dinâmica;
 - Políticas de prioridade fixa (RM, DM), ou prioridade dinâmica (EDF);

Prioridade fixa ou dinâmica

- Algoritmos de prioridades dinâmicas, como o EDF, eram considerados instáveis para tratamento com carga dinâmica;
 - Está sendo extendido para dar suporte à escalonamentos mistos;
- Os algoritmos dinâmicos os mais altos limites de escalonabilidade:
 - Maior uso do processador;
 - Maior capacidade de processamento da carga aperiódica;

Escalonamento de tarefas aperiódicas

- Dois tipos de abordagem:
 - Baseadas em servidores:
 - Background Server (BS);
 - Polling Server (PS);
 - Deferrable Server (DS);
 - Priority Exchange Server (PES);
 - Sporadic Server (SS);
 - Baseadas em tomadas de folgas:
 - "Slack Stealing";

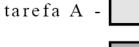
Escalonamento de tarefas aperiódicas

SERVIDORES DE PRIORIDADE FIXA

Servidores de prioridade fixa

- Políticas baseadas em prioridades fixas, mais especificamente o "rate monotonic";
- As sobras na escala do processador são determinadas estaticamente, em tempo de projeto:
 - Posteriormente em tempo de execução são utilizadas para as tarefas aperiódicas;

Background Server (BS)


- Extremamente simples;
- A carga periódica recebe prioridade mais alta que a carga aperiódica;
- A carga aperiódica utiliza as sobras do processador, só quando não há tarefas periódicas em estado de pronto (ready);

Background Server (BS)

- Tempos de resposta muito altos para as tarefas aperiódicas;
- Só é aplicável quando as tarefas aperiódicas não são críticas e a carga periódica não é alta;

Background Server (BS)

tarefas	C_i	P_{i}	D_i	p_i
tarefa periódica A	4	10	10	1
tarefa periódica B	8	20	20	2
tarefa aperiódica C	1	-	-	3
tarefa aperiodica D	1	-	-	3

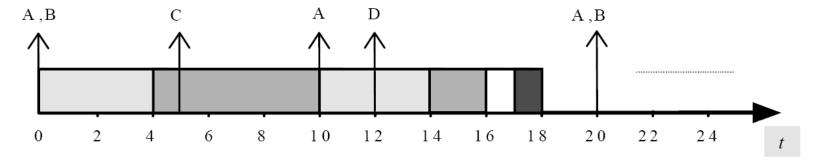


Figura 2.14: Servidora de "Background"

As tarefas periódicas possuem garantias em tempo de projeto. Sua utilização não passa de 0,028.

- Consiste na definição de uma tarefa periódica para atender a carga aperiódica;
- Um espaço é aberto periodicamente para a execução da carga aperiódica;
- A tarefa servidora possui período P
 Ps e tempo de computação C
 Ps e sistema de prioridades de acordo com o RM;

- Em cada ativação a tarefa servidora executa as requisições aperiódicas dentro de seu limite de computação C_{PS};
- Quando não houver requisições de tarefas aperiódicas pendentes, a tarefa PS é suspensa até a sua próxima ativação;
- Se uma tarefa aperiódica ocorre logo depois da suspensão da tarefa PS, ela terá de esperar a próxima ativação de PS;

- A interferência de PS é no máximo igual a uma tarefa periódica de período PPS, e tempo de computação CPS;
- A abordagem "Polling Server" melhora o tempo de resposta das tarefas aperiódicas;
- Porém, o PS não fornece serviço de atendimento imediato à tarefas aperiódicas;
- O tempo de resposta depende do período e do tempo de computação de PS;

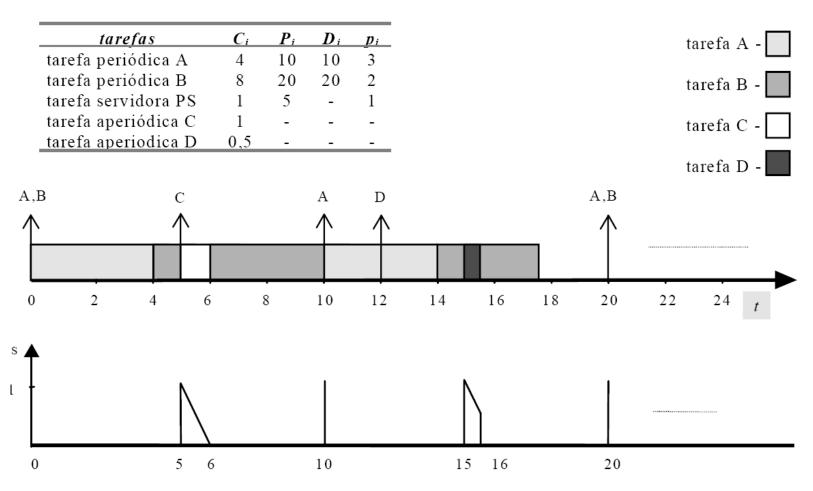
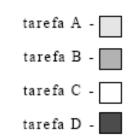


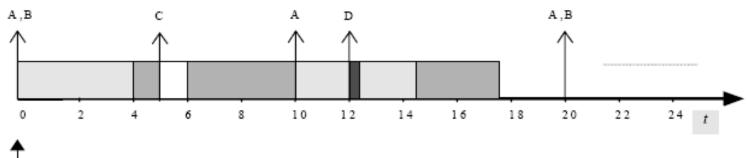
Figura 2.15: Algorítmo "Polling Server"

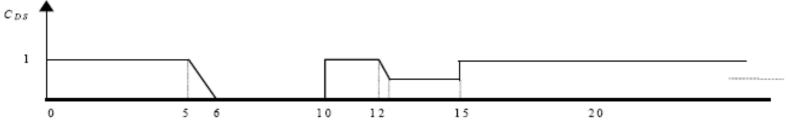
- Assim como o Polling Server (PS), o DS também é baseado na criação de uma tarefa periódica que recebe uma prioridade segundo uma atribuição "rate-monotonic";
- Seu maior diferencial em relação ao "Polling Server" é que o DS conserva a sua capacidade, mesmo quando não existirem requisições durante a ativação da tarefa DS;

- Requisições não-periódicas podem ser atendidas no nível de prioridade da tarefa servidora DS, enquanto a sua capacidade (denotada como CDS) não se esgotar no período correspondente;
- No início de cada período da tarefa servidora DS, a sua capacidade de processamento é totalmente restaurada;

- Segundo Farines (Farines et al., 2000), quando a política "rate-monotonic" é usada, a influência da tarefa servidora DS sobre a utilização da carga periódica não pode ser determinada de maneira tão simples como no caso do "Polling Server";
- A equação a seguir mostra uma relação entre a utilização da tarefa servidora DS e a utilização da carga periódica;

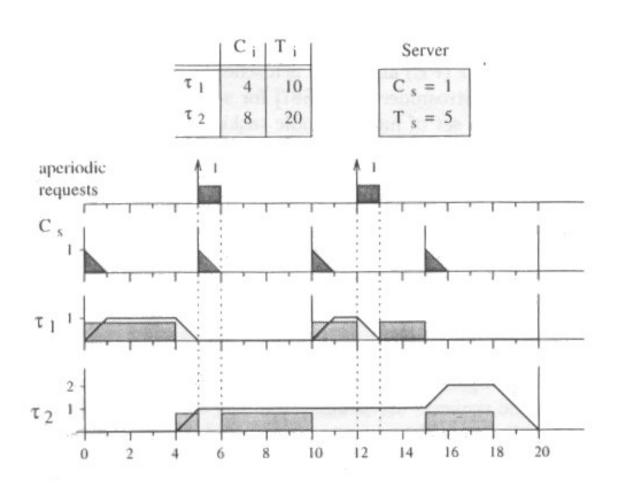

 A equação abaixo, apresentada por Sprunt (Sprunt et al., 1989), é uma derivada do teste do ajuste do "rate-monotonic" para a captação do comportamento da tarefa servidora DS;


$$UP \le \ln \left(\frac{UDS + 2}{2UDS + 1} \right)$$


Na equação:

U_P = utilização da carga periódica; U_{DS} = utilização da servidora DS;

tarefas		C_i	P_i	D_i	p_i
tarefa periódica	A	4	10	10	3
tarefa periódica l	В	8	20	20	2
tarefa servidora l	PS	1	5	-	1
tarefa aperiódica	С	1	-	-	-
tarefa aperiodica	D	0,5	-	-	-



- Em relação ao "Deferrable Server", o PES apresenta um desempenho ligeiramente pior no que diz respeito ao tempo de resposta fornecido para as tarefas aperiódicas;
- Em compensação, fornece um melhor escalonamento para o conjunto de tarefas periódicas;

- O principal diferencial do PES para o DS está na forma como a capacidade é preservada. A idéia é preservar a capacidade de prioridade alta a partir da troca da mesma por tempo de execução de uma tarefa periódica de prioridade mais baixa;
- Assim como ocorre com o DS, no início de cada período do servidor, a capacidade de processamento é totalmente restaurada;

- No PES, as requisições são atendidas conforme a capacidade do servidor, caso contrário o tempo de computação do servidor CPE é trocado pelo tempo de execução da tarefa periódica ativa de mais alta prioridade;
- Quando ocorre troca de prioridade, a tarefa periódica executa no nível de prioridade do servidor, enquanto o mesmo acumula capacidade no nível de prioridade da tarefa periódica;

- A tarefa periódica prossegue com sua execução e a capacidade do servidor não é perdida;
- Enquanto não existem requisições aperiódicas na fila, a troca de prioridades continua com as tarefas periódicas, até a capacidade do servidor ser usada para atender as requisições aperiódicas, ou o nível de prioridade chega no caso já abordado pelo "Background Server" (BS);

- Conceito:
 - Trata-se de um servidor de escalonamento de tarefas;
- Objetivo:
 - Garantir a execução de tarefas esporádicas;

O que seria uma tarefa esporádica?

	Exemplos de Tarefas
Tarefas Periódicas	Controle de processo via laço de realimentação.
Tarefas Aperiódicas	Aparecimento de objeto em tela de radar.
Tarefas Esporáticas	Atendimento de um botão de alarme.

- O que seria um servidor?
 - "As sobras nas escalas de carga periódicas são determinadas em tempo de projeto (estaticamente) e atribuídas em tempo de execução (dinamicamente) ao processamento aperiódico usando o conceito de servidor."

Um breve estudo comparativo dos servidores apresentados:

Escalonamento de tarefas aperiódicas.							
Conceito de Servidor	SB	PS	DS	PE	SS		
Capacidade de atender tarefas aperiódicas.	х	Х	х	Х	х		
Define tarefa periódica para antender carga aperiódica.		х	х	Х	х		
Prioridade fixa no servidor de tarefas aperiódicas.		Х	х		Х		
Serviço imediato para requisições aperiódicas.			х	Х	Х		
Serviço imediato para requisições aperiódicas críticas.					Х		

- Principais características:
 - Simplicidade do algoritmo DS;
 - Capacidade de processamento do PE;
 - A grande novidade é a garantia em tempo de projeto;
 - Como isso acontece? Tarefas esporádicas assumem um comportamento de tarefas periódicas;

Como assim?

Seguindo a definição, mais uma vez: "As sobras nas escalas de carga periódicas são determinadas em tempo de projeto (estaticamente) e atribuídas em tempo de execução (dinamicamente) ao processamento aperiódicos usando o conceito de servidor."

- · Como assumir um comportamento periódico?
 - O <u>período</u> deve ser, no máximo, igual ao <u>intervalo</u> <u>mínimo entre as ativações</u>;
- Exemplo do **botão de alarme**:
 - Período é o tempo mínimo para o tratamento do sinal ativado pelo botão;
 - Intervalo mínimo entre as ativações é o tempo aceitável para que o botão de alarme seja pressionado novamente;

- Simplificando, ainda mais...
 - O ato de pressionar o botão de alarme deve ser ignorado até que o período em que o alarme esteja ativo seja concluído!

Sporadic Server: algoritmo

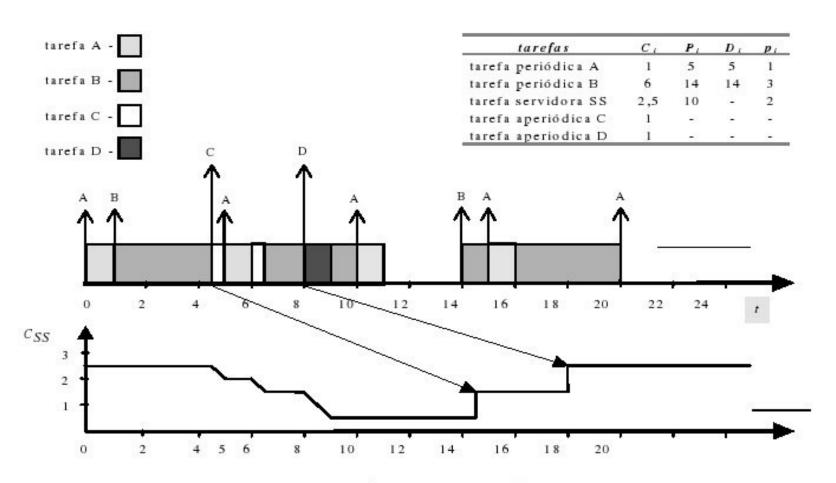


Figura 2.17: Algorítmo "Sporadic Server"

tarefas	C_{I}	P .	D_{i}	Mini	P :
tarefa periódica A	4	12	12	56	1
tarefa periódica B	4	20	20	43	2
tarefa servidora SS	8	32	10	53	3
tarefa aperiódica C	8	2	10	32	23

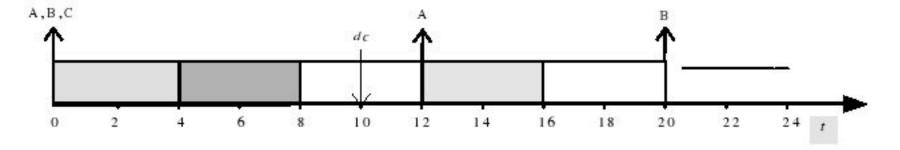


Figura 2.18: Servidor SS e RM usados em carga aperiódica com $D_i = M in_i$

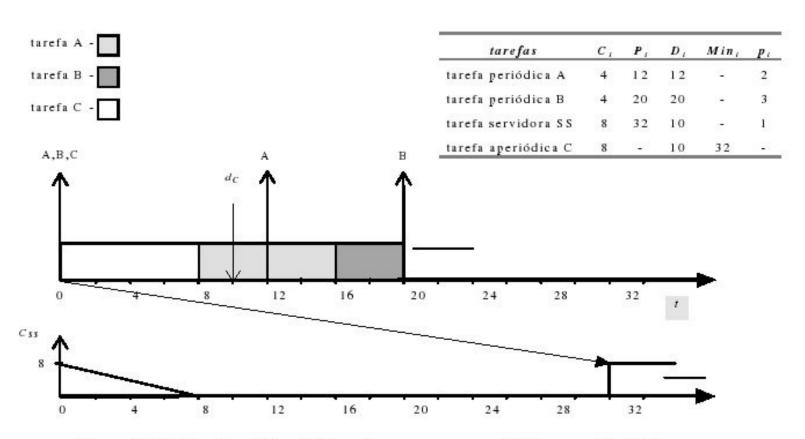


Figura 2.19: Servidor SS e DM usados em carga aperiódica com Di < Mini

SS: comparativo

tarefas	С,	P,	U, (%)
tarefa l	2	10	20,0
tarefa 2	6	14	42,9
servidor D S	1,00	5	20,0
servidor PE	1,33	5	26,7
servidor SS	1,33	5	26,7

Tabela 2.7: Utilização dos servidores DS, PE e SS

Perguntas?

Obrigado

- Felipe Maia (fm@cin.ufpe.br)
- Rodrigo Carvalho Costa (rcc4@cin.ufpe.br)
- Thiago José Moreira Lins (tjml@cin.ufpe.br)