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What are Real-Time Systems?
Real-time computing systems are systems in which it is possible to
predict and control when different computations are handled. They
are critical components of an industrialized nation’s technological
infrastructure. Modern telecommunication systems, automated facto-
ries, defense systems, power plants, aircraft, airports, spacecraft, med-
ical instrumentation, SCADA systems, people movers, railroad
switching, and other vital systems cannot operate without them. 

In real-time applications, the correctness of a computation depends
not only upon its results but also upon the time at which its outputs
are generated. The measures of merit in a real-time system include:

•Predictably fast response to urgent events.

•High degree of schedulability: The timing requirements of
the system must be satisfied at high degrees of resource usage. 

•Stability under transient overload: When the system is over-
loaded by events and it is impossible to meet all the deadlines,
the deadlines of selected critical tasks must still be guaranteed.

The key criteria for real-time systems differ from those for time-shar-
ing systems. The following chart shows what behavior each type of
system emphasizes in several important arenas.
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Responsiveness Fast average response Ensured worst-case latency: latency
is the worst-case response time
to events.

Capacity High throughput Schedulability: the ability of sys-
tem tasks to meet all deadlines.

Overload Fairness Stability : under overload condi-
tions, the system can meet its
important deadlines even if
other deadlines cannot be met.

Time-Shared Systems Real-Time Systems



Real-Time System Application Domains

These include but are not limited to:

•Telecommunication Systems

•Automotive Control

•Multimedia Servers and Workstations

•Signal Processing Systems

•Radar Systems

•Consumer Electronics

•Process Control

•Automated Manufacturing Systems

•Supervisory Control and Data Acquisition (SCADA) Systems

•Electrical Utilities

•Semiconductor Fabrication Systems

•Defense Systems

•Avionics

•Air Traffic Control

•Autonomous Navigation Systems

•Vehicle Control Systems

•Transportation and Traffic Control Systems

•Satellite Systems

•Nuclear Power Control Systems

8



A Taxonomy of Real-Time Software
Architectures
Virtually all real-time applications use one of four (overlapping)
architectural patterns:

•A cyclic executive (also called a “timeline” or frame-based sys-
tem)

•Event-driven systems with both periodic and aperiodic activi-
ties

•Pipelined systems

•Client-server systems

9



Cyclic Executives

•A timeline uses a timer to trigger a task every minor cycle (or
frame).

•A non-repeating set of minor cycles comprises a major cycle.
•The operations are implemented as procedures, and are placed
in a pre-defined list covering every minor cycle.

•When a minor cycle begins, the timer task calls each procedure
in the list.

•Concurrency is not used; long operations must be manually
broken to fit frames.

Below is a sample cyclic executive; it consists of minor frames and
major frames. Major frames repeat continuously. Within a minor
frame, one or more functions execute. Suppose that a minor frame is
10 ms long. Consider 4 functions that must execute at a rate of 50Hz,
25 Hz, 12.5 Hz, and 6.25 Hz respectively (corresponding to a period
of 20 ms, 40 ms, 80 ms, and 160 ms respectively). A cyclic executive
can execute them as follows. Note that one minor frame is idle in the
major frame and can be used for future expansion.
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Major Frame

Minor Frames

repeats 
continuously

Major Frame

Function 1 (once every
2 minor frames)

Function 4 (once every
16 minor frames)

Function 2 (once every
4 minor frames)

Function 3 (once every
8 minor frames)



Software Architecture for Cyclic Executives 

Please refer to the above key with the software architectures present-
ed in subsequent sections as well.
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Function 1

Function Call(s)

Device I/O

Device I/O

Function 2

Cyclic
Executive

Active
Thread

Function 3

Function 4

Timer Interrupt
(e.g., 50 Hz,
20 ms timer)

Key:

Invocation/Access

Shared Resource Access
(via critical section)

Trigger/Directional Access

Unidirectional Message



Event-Driven Systems

An event-driven design uses real-time I/O completion or timer
events to trigger schedulable tasks.

Tasks have priorities:

•Priorities should be determined by time constraints (e.g., rate-
monotonic or deadline-monotonic priority assignment poli-
cies).

•Task priority can also be based on semantic importance (but
will cause schedulability problems).

The resulting concurrency requires synchronization (e.g., mutex, sem-
aphores, etc.).

•For predictable response, synchronization mechanisms must
avoid (i.e. remain free of) unbounded priority inversion.

•To preserve predictable response, aperiodic events must pre-
serve utilization bounds.

Task 1

R1

R2

Device I/O

Device I/O

Task 2

Output
Manager 2

Output
Manager 1

Task 3

Task 4

Periodic
timer(s)
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Pipelined Systems

Pipelined systems use possibly prioritized inter-task messages in addi-
tion to I/O completion and timers to trigger tasks.

Control flow for an event proceeds throughout the system from
source to destinations.

Thus, these systems can be described as a set of pipelines of task
invocations.

Task priorities play only a minor role:

•A unidirectional pipeline with increasing task priorities will
minimize message queue buildup.

•If the pipeline is bi-directional, task priorities are usually equal
along the pipeline.
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Client-Server Systems

Client-Server Systems use inter-task messages in addition to I/O
completion and timers to trigger tasks.

Sending tasks, or clients, block pending response from receiving tasks,
or servers.

Control for an event remains at a single system node while dataflow
is distributed

Thus, error processing, checkpointing, and debugging are significant-
ly easier for client-server systems than for pipelined systems.

As with pipelined architectures, task priorities play only a minor role.

•Ideally, server tasks inherit priorities from clients. This is often
impractical, so priorities are frequently set the same, using pri-
oritized messages to avoid bottlenecks.
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Why Do Timing Analysis? 
Timing Risk Elimination: Using timing analysis, risks of timing conflicts
can be eliminated from your real-time system – while the logic cannot
be guaranteed within your system, timing analysis can guarantee that
your system timing constraints will be satisfied.

Dramatic Reduction in Integration and Testing Time: Your savings on inte-
gration and testing time alone will more than compensate you for
applying analytical techniques. These benefits stem from the applica-
tion of Rate-Monotonic Analysis (RMA), the scientifically proven
framework for building analyzable and predictable real-time systems.

Robust Systems Interaction: Your real-time systems are complex and may
comprise two or more processors with interconnecting backplane
buses and/or network links. These processors work asynchronously
with each other. What you want is the assurance and the comfort that
,given all possible working conditions, your system will do the right
thing at the right time. The use of scientifically proven methodology
offers this guarantee.

Enhanced System Reliability: The RMA framework and the analyses and
simulation that one can perform enhance your system reliability. Since
sub-systems and components will behave as expected, there need be
no confusion as to whether an inordinately delayed message will cause
the failure of a component.

A Priori Testing: You can design and test your system even before it is
built, thereby significantly reducing the cost and risk of using the
wrong choice or number of components.
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Where Do Timing Requirements
Originate?
Timing constraints originate from two sources:

Top-level (Explicit) Requirements
•Assemble two units every second in a manufacturing plant
•Satisfy end-to-end timing constraint of 2 seconds in an air traf-
fic control system

Derived (Implicit) Requirements
•Precision: e.g., “track aircraft position to within 10 meters”
•Dependability: e.g., “Recover from message loss within 500 ms”
•User-interface requirements , e.g.,

•Respond to key presses within 200 milliseconds
•Maintain a 30-frames-per-second video frame rate.

Real-time system requirements are often specified such that derived
timing requirements are often the most common source of timing
requirements. That is, at the top level, timing constraints may be
sparse.
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Why Use Schedulability Analysis or
Simulation?

•Capture system requirements to use in competitive proposals,
and then to pass as requirements document to your design and
development team.

•Visually represent both hardware and software configurations.
•Guarantee predictable behavior.
•Clearly understand worst-case timing behavior.
•Demonstrate competitive average-case timing behavior.
•Perform what-if analyses.
•Avoid costly mistakes.
•Identify better/cheaper configurations with what-if-analyses
and automatic binding of software components to hardware
components.

•Ensure that sufficient resources remain for future system
expansion.

•Automatically track component costs.
•Automatically track component development history.
•Customize catalog to track your system-specific component
attributes, e.g., vendor address.

•Use report designer to incorporate in-house visual and docu-
mentation conventions.

•Write plug-ins to analyze and/or simulate in-house compo-
nents.

•Distribute configuration and cost options to customers with
custom catalog.

•Obtain certification by capturing and analyzing your system for
the benefit of regulatory and certification bodies. 
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Real-Time Scheduling Policies

Fixed Priority Preemptive Scheduling: Every task has a fixed priority that
does not change unless the application specifically changes it. A high-
er-priority task preempts a lower-priority task. Most real-time operat-
ing systems support this scheme.

Dynamic-Priority Preemptive Scheduling: The priority of a task can change
from instance to instance or within the execution of an instance, in
order to meet a specific response time objective. A higher-priority
task preempts a lower-priority task. Very few commercial real-time
operating systems support such policies.

Rate-Monotonic Scheduling : An optimal fixed-priority preemptive sched-
uling policy in which, the higher the frequency (inverse of the period)
of a periodic task, the higher is its priority. This policy assumes that
the deadline of a periodic task is the same as its period. It can be
implemented in any operating system supporting fixed-priority pre-
emptive scheduling or generalized to aperiodic tasks.

Deadline-Monotonic Scheduling: A generalization of the rate-monotonic
scheduling policy in which the deadline of a task is fixed point in time
relative to the beginning of the period. The shorter this (fixed) dead-
line, the higher the priority. When the deadline time equals the peri-
od, this policy is identical to the rate-monotonic scheduling policy.

Earliest-Deadline-First Scheduling: A dynamic-priority preemptive sched-
uling policy. The deadline of a task instance is the absolute point in
time by which the instance must complete. The deadline is computed
when the instance is created. The scheduler picks the task with the
earliest deadline to run first. A task with an earlier deadline preempts
a task with a later deadline. This policy minimizes the maximum late-
ness of any set of tasks.

Least Slack Scheduling : A dynamic-priority non-preemptive scheduling
policy. The slack of a task instance is its absolute deadline minus the
remaining worst-case execution time for the task instance to com-
plete. The scheduler picks the task with the shortest slack to run first.
This policy maximizes the minimum lateness of any set of tasks.
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Analyzing Periodic Tasks
1. Consider a set of n periodic tasks, each with a period Ti and a

worst-case execution time Ci.
2. Assign a fixed higher priority to a task with a shorter period; i.e.,

higher rates get higher priorities ( rate-monotonic priority assign-
ment).

3. All of these tasks are guaranteed to complete before the end of
their periods if: 

where the bound is:
•1.0 for harmonic task sets. 

•A task set is said to be harmonic if the periods of all its
tasks are either integral multiples or sub-multiples of one
another.

•0.88 on the average for random Ci’s and T i’s.
•n(21/n - 1). 
•1.0 for n=1, 0.69 = ln 2 for large n.

The bound varies between 0.88 and 0.98 for most realistic, prac-
tical task sets. 

Task Utilization: Ui=Ci/Ti is called the utilization of task i.

Benefits:
Simplicity, efficiency, wide support, practicality.

Examples of Periodic Tasks:
Many activities in real-time, embedded and multimedia systems are
periodic.

•audio sampling in hardware
•audio sample processing
•video capture and processing
•feedback control (sensing and processing)
•navigation
•temperature and speed monitoring

C1

T1

C2

T2

Cn

Tn
+ +  . . .  + < bound



Why is the RM Scheduling Bound Less Than
100%?

Consider two periodic tasks: τ1 = {C1 = 41, T1 = 100} and τ2 = {C2
= 59, T2 = 141}.  Let both tasks start together and let rate-monoto-
nic scheduling be used. The first instance of task τ1 arrives at time 0
and the second at time 100. The first instance of task τ2 arrives at
time 0 and the second at time 141. The first instance of task τ2 must
complete within time 100 and the first instance of τ2 must complete
within time 141. 

A timeline tracing these tasks would be complete from time 0 to time
141. If C1 or C2 is increased by even a very tiny amount, the first
instance of τ2 will miss its deadline at time 141. The total utilization
of this task set is 41/100 + 59/141 = 0.41 + 0.4184 = 0.8184. In
other words, for a two-task set, deadlines can be missed at about 82%.
With more tasks, this number can drop to 69%, but no lower. But
these thresholds represent pathological cases. For example, notice
that the utilization of the two tasks is (almost) equal, C1 = T2 – T1,
and that T2/T1 = 1.414 = sqrt(2). Similarly, the 69% bound is
obtained for a large number of tasks with U1 = U2 = … = Un, Ci =
Ti+1 – Ti, and Ti+1/Ti = 21/n.

However, in practice, rate-monotonic scheduling can almost always
yield at least 88% schedulable utilization. For harmonic task sets, the
schedulable utilization is 100%. As a result, task sets with even a few
harmonic periods tend to have very high schedulable utilization.
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Dealing With Context Switch Overhead

It takes a finite amount of time for the operating system to switch
from one running thread to a different running thread. This is
referred to as “context switching overhead”.

The worst-case impact of context switching overhead can be com-
pletely accounted for by considering that there are, at most, two
scheduling actions per task instance, with one context switch when
the instance begins to execute and another when it completes. Thus,
the utilization of each task now becomes:

Ui = Ci/Ti + (2*CS)/Ti

where:

CS = worst-case round-trip context switch time from one task to
another.

One can now pose the question “How long should a context switch
take?”

The objective of a real-time system builder must be to keep 2*CS a
small fraction of T1, the smallest period of all tasks in the system.
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Computing Completion Times Efficiently

The following applies to periodic tasks that are scheduled using any
fixed-priority preemptive scheduling policy.

Theorem: Consider a set of independent, periodic tasks.  If each task
meets its first deadline under the worst-case task phasing, all deadlines
of all tasks will always be met.

The worst-case scenario occurs when all tasks arrive simultaneously.

Completion Time (CT) Test: Sort the set of periodic tasks in descending
order such that priority(task i) > priority(task i+1). Suppose that the
worst-case computation time, period, and deadline of task i are rep-
resented by Ci, Ti, and Di, with Di < Ti. 

Let Wi be the worst-case completion time of any instance of task i.
Wi may be computed by the fixed-point formula: 

Wi(0) = 0
Wi(n+1) = Ci + Σ Wi(n) / Tj  C j

Task i is schedulable if its completion time Wi is at or before its dead-
line Di (i.e. Wi < Ti).

22
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Analyzing Task Synchronization

Real-time tasks typically share resources and services for which they
must be prepared to wait if they are unavailable. These resources and
services may include:

•Logical resources such as buffers and data.
•Physical resources such as printers and devices.
•Services such as window managers, naming and directory serv-
ices, transaction services, filesystem services, etc.

Tasks are said to be in a critical section while they are holding a shared
resource. This can cause unbounded priority inversion.

Solution: Use any of the priority inheritance protocols:

A priority inheritance protocol bounds and minimizes priority inver-
sion.

where:

Bi = maximum priority inversion encountered by any instance of task i.

Bn=0.

23

C1+B1

T1

C2+B2

T2

Cn+Bn

Tn
+ +  . . .  + < bound



Priority Inversion

Priority inversion is said to occur when a task is forced to wait for a
lower-priority task to execute.

Consider three tasks Taskhigh , Taskmedium, and Tasklow, listed in
descending order of priorities. Taskhigh and Tasklow share a logical
resource protected by a critical section.

Let Taskhigh , Taskmedium, and Tasklow arrive at times t1, t2, and t3 respec-
tively.

The graph below illustrates what happens to the execution patterns of
each of the three tasks:
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t1 t2 t3
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Execution in
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Priority 
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Unbounded Priority Inversion

Unbounded priority inversion can happen when there are multiple
medium-priority tasks and these tasks are also periodic. As a result,
each of these medium-priority tasks can preempt the lowest-priority
task holding the critical section. In addition, the medium-priority
tasks can recur due to their periodicity, preempting the lower-priority
task.
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Task1medium
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Taskmmedium

Tasklow

Key:

t1 t2 t3
time

uncontrolled priority inversion
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Execution in
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Real-Time Synchronization Protocols
Goals:
Bound and minimize priority inversion.

Schemes::
•Basic Priority Inheritance Protocol
•Priority Ceiling Protocol
•Critical Section Execution at Priority Ceiling (sometimes called
Priority Ceiling Protocol Emulation or Highest Locker
Protocol)

•Non-Preemption Protocol: disable preemption within a critical
section

Comparison of Synchronization Protocols

1 A maximum of min(m, n) critical sections, where n is the number of
lower priority tasks and m is the number of distinct locks obtained by
them. This assumes that deadlocks are avoided by using other
schemes such as “total ordering” of the sequence of locks.

2 Tasks must not suspend within a critical section (e.g. for I/O oper-
ations).
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Basic Priority Inheritance Multiple1 No

Priority Ceiling Protocol 1 Yes

Critical Section Execution 1 Yes2

at Priority Ceiling

Non-Preemption Protocol 1 (but potentially Yes2

very large)

Maximum Priority
Inversion

Deadlock
Prevention



The Priority Inheritance Protocol

A task runs at its original priority unless it is blocking one or more
higher-priority tasks. In that case, it runs at the priority of the high-
est-priority task that it blocks.

Note that when a lower-priority task inherits the priority of a higher-
priority task, intermediate-priority tasks encounter priority inversion.
The higher-priority task also continues to encounter priority inversion
in that it must still wait for the lower-priority task to exit its critical sec-
tion. The following diagram provides an example of priority inheri-
tance in action:
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The Priority Inheritance Protocol (cont.)

The Mutual Deadlock Problem
Mutual deadlocks can occur with the basic priority inheritance proto-
col.

•Task 1 wants to lock L1 and then L2 in nested fashion.
•Task 2 tries to lock L2 and then L1 in nested fashion.

Task 2 locks L2 first, before getting preempted by task 1, which then
locks L1. Now, tasks 1 and 2 will be mutually deadlocked. This sce-
nario can also happen with sequences of 2 or more tasks.

Avoiding Deadlocks
With the basic priority inheritance protocol, one must use a scheme
such as “Total Ordering” while attempting to obtain locks. 

That is, number each resource uniquely. Access these resources using
a convention such as: “Nested locks may be obtained only in ascend-
ing order of resource numbering.” 

Not using nested locks is the easiest way to achieve total ordering.
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The Priority Ceiling Protocol

Each shared resource has a priority ceiling that is defined as the pri-
ority of the highest-priority task that can ever access that shared
resource.

The protocol is defined as follows.
•A task runs at its original (sometimes called its base) priority
when it is outside a critical section.

•A task can lock a shared resource only if its priority is strictly
higher than the priority ceilings of all shared resources cur-
rently locked by other tasks. Otherwise, the task must block,
and the task which has locked the shared resource with the
highest priority ceiling inherits the priority of task t.

An interesting consequence of the above protocol is that a task may
block trying to lock a shared resource, even though the resource is not
locked.

The priority ceiling protocol has the interesting and very useful prop-
erty that no task can be blocked for longer than the duration of the
longest critical section of any lower-priority task.

29



Example of The Priority Ceiling Protocol

Consider tasks Taskhigh , Taskmedium, and Tasklow in descending order of
priority. Taskmedium accesses Lock 2 and Tasklow accesses Lock 1.
Taskhigh accesses both Lock 1 and Lock 2. Locks 1 and 2 both have
the same priority ceiling, which equals the priority of Task 1.

At time t1, Tasklow can successfully enter Critical Section 1 since there
are no other tasks in a critical section. At time t2, Taskmedium tries to
enter Critical Section 2. But since Tasklow is already in a critical section
locking a shared resource with a priority ceiling equal to the priority
of Taskhigh , Taskmedium must block and Tasklow starts running at the pri-
ority of Taskmedium. Later, at time t3, when Taskhigh tries to enter
Critical Section 1, it has to block as well and Tasklow starts executing
at the higher priority of Taskhigh. When Tasklow exits its critical sec-
tion, it resumes its original lower priority. Taskhigh can now enter both
Critical Sections 1 and 2. Note that Taskhigh’s priority inversion is
bounded by one critical section (that of Taskmedium or that of Tasklow
but not both).
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Priority Ceiling Protocol Emulation

The priority ceiling of a shared resource is defined, as before, to be
the priority of the highest-priority task that can ever access that
resource.

A task executes at a priority equal to (or higher than) the priority ceil-
ing of a shared resource as soon as it enters a critical section associ-
ated with that resource.

Example: Applying the Priority Ceiling Protocol Emulation to the
Priority Ceiling Protocol example results in the following sequence.
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Aperiodic Tasks
Tasks in real-time and embedded systems are not always periodic.
They can consist of operator requests, emergency message arrivals,
threshold crossing notifications, keyboard presses, mouse move-
ments, detection of incoming objects, dynamic software compilation,
etc.

The Aperiodic Server Approach
Create a pseudo-periodic task with a period Tserver and an execution
time C server.

The server will get Cserver worth of “tickets” every successive Tserver
time units.

•Unused tickets are lost when the server’s ticket is “replen-
ished”.

Tserver corresponds to a particular priority level based on rate-monot-
onic priority assignment.

An aperiodic task checks the server on arrival. If the server has a tick-
et, the task can use the tickets to consume the CPU for the duration
of the server at the server’s priority level.

Benefits:
Can be used to guarantee hard deadlines for aperiodic (“sporadic”)
events with minimum inter-arrival times.
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Aperiodic Servers

There are two noteworthy servers, the deferrable server and the spo-
radic server. Of these, the sporadic server has higher schedulable uti-
lization and lends itself more easily to analysis. However, it is more
complex to implement.

Deferrable Server

The replenishment time of tickets is completely independent of tick-
et usage. Cserver “tickets” are replenished every Tserver time units. This
is the scheme described above.

Comments:
While the deferrable server is simpler to implement, it deviates
adversely from the Rate-Monotonic Strict Periodic Execution Model
which leads to serious schedulability problems. A system can have at
most one deferrable server, which must be at the highest priority in
the system.

Sporadic Server

Here, the replenishment time is dependent strictly on ticket usage
time.

Used tickets are replenished Tserver time units following the start of
usage.

Example::
If 1 unit of server ticket is (begun to be) consumed at time t, and 2
units of server tickets are (begun to be) consumed at t’, then the 1
unit can be replenished at time t+Tserver, and the 2 units can be replen-
ished at time t’+Tserver .

Comments:
As illustrated by the above example, the sporadic server may have to
track multiple ticket usages and their times. Its implementation there-
fore can be more complex. Simple but more conservative implemen-
tations are possible, however.

On the plus side, a system can have multiple sporadic servers on a sin-
gle node for different categories of aperiodic events with different C’s
and T’s. This is because, in the worst case, the sporadic server behaves
like a strict rate-monotonic periodic task.
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Dealing With A Limited Number of
Priority Levels
The original definitions of rate-monotonic and deadline-monotonic
scheduling algorithms assumed that each task with a different time
constraint could be assigned a unique priority. For example, if there
were 32 periodic tasks, each with a different time constraint, 32 dis-
tinct priority levels would be needed to use rate-monotonic or dead-
line-monotonic priority assignment.

However, a good approximation of rate-monotonic or deadline-
monotonic priority assignments can be used when a sufficient num-
ber of priority levels is not available due to limitations from the
underlying run-time system or operating system.

Priority Mapping Scheme

Determine the longest and shortest periods that your system needs to
support. Draw the time-spectrum between these two periods on a
logarithmic scale, and divide the spectrum equally into n segments,
where n is the number of distinct priority levels available.

We, therefore, have t1/t0 = t2/t1 = … = tn/tn-1 = r, where t0 and tn are
the shortest and longest time constraints, respectively, to be support-
ed. Suppose we use rate-monotonic scheduling and the period of a
task is Ti. This task is assigned the priority j such that tj-1 < Ti < tj. Use
the relative time constraint instead of the task period Ti in the above
context if deadline-monotonic scheduling is used.
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Example Scenario for Dealing With A
Limited Number of Priority Levels

Suppose that the underlying real-time OS (such as Windows NT) sup-
ports only 8 priority levels. Let the smallest period of a real-time task
be 10 ms and the longest period be 2.5 seconds. The following prior-
ity-mapping scheme can then be used.

In this example, we assume above that priority level 7 is higher than
priority level 6. Some real-time operating systems have the opposite
convention, in which a lower value indicates a higher priority level.

Comments:
This suggested way of assigning priorities with a limited number of
priority levels is not optimal, but generally produces a good mapping.
For a specific task set, priority assignments with much better schedu-
lability can frequently be obtained manually. This scheme is essential-
ly an analyzable heuristic that works well in a broad range of cases.
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Dealing with a Limited Number of Priority
Levels (cont.)

Schedulability Loss

Suppose that the shortest period to be supported is 1 ms and the
longest period is 100 seconds. We have: tn/t0 = 100/10-3 = 105. The
loss in schedulability due to the above lumping of tasks with differ-
ent periods (deadlines) into the same priority level is shown below as
the number of priority bits available is varied; e.g., having 4 priority
bits means that 16 priority levels are supported. 

In general, having 256 distinct priority levels is practically equivalent
to having a distinct priority level for each time constraint with a neg-
ligible loss of 0.0014 (about one tenth of one-percent). Having 5 pri-
ority bits (32 priority levels) is a good compromise for hardware sup-
port, where additional priority bits can be too expensive. In software,
however, where the additional expenses are minimal, 8 bits (256 pri-
ority levels) are recommended.
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Other Capabilities of Real-Time
System Analysis

•End-to-end timing analysis

•Network link and backplane bus analysis

•CANbus analysis

•Network switch analysis

•Jitter analysis

•Automatic binding of software to hardware components

•Computation of slack capacity in system for future growth

•RT-CORBA & Real-Time DCOM analysis

•Quality of Service (QoS) management

•QoS-based Resource Allocation Model that can deal with
application QoS attributes such as frame size and frame
rate, along with timeliness, cryptographic security and
dependability.

Please contact TimeSys Corporation (www.timesys.com) for additional
information.
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Recommendations for Real-Time
System Builders
1. Adopt a proven methodology like RMA, which is:

•Used by GPS satellites, submarines, fighter aircraft, shipboard
control, air traffic control, medical instrumentation, multime-
dia cards, etc.

•Supported at least in part by commercial OS vendors
(Windows 95/NT, AIX, Solaris, OS/2, HP/UX) and virtually
all real-time OS vendors (TimeSys Linux/RT, LynxOS, QNX,
pSoS, VxWorks, etc.)

•Supported by standards including Real-Time CORBA, POSIX,
Ada 83 and Ada95, and Sun’s Java Specification for Real-Time.

•Adopted by NASA (Space Station) and by the European Space
Agency.

2. Apply tools that support the methodology
•Example: For RMA, use TimeWiz and TimeTrace from
TimeSys Corporation (www.timesys.com).

•TimeSys offers a suite of complementary products to serve
your real-time system needs, as well as a range of consulting
services and training courses.

3. Utilize the experience and knowledge of real-time system experts
on such subjects as:

•How to use OS primitives correctly (e.g.,with priority inheri-
tance enabled on message queues and mutexes).

•How to use middleware services.
•How to structure applications with object-orientation.
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Object-Oriented Techniques in Real-
Time Systems
Problems with Direct Application of Traditional Object-Oriented Methodologies

•Existing OO methodologies generally push performance
issues into the integration and test phase

•Result: unbounded integration and test-phase, much
higher risk and cost.

•Most response-time problems are hidden until late in integra-
tion.

•Inheritance and polymorphism should be limited where pre-
dictability is critical.

Recommendations
•Identify concurrency early (perhaps a single thread per object).
•Choose threads early – at architecture definition time.
•Choose threads that do not encapsulate multiple timing constraints.
•Define scheduling techniques before finishing architecture.
•If timing constraints are critical, plan for analytical model (e.g.,
RMA) in addition to discrete event simulation.

Comments
There are important practical considerations for real-time OO systems:

•The usual OO underlying OS and infrastructure (e.g., CORBA
ORBs, X-Windows) implementations usually contain intrinsic
priority inversions.

•Inheritance and polymorphism are extremely valuable, but can
make response time predictability difficult.

•Software architecture must always consider performance!
•For real-time systems, specific architectures have important
real-time properties.

•Object-oriented design/programming is usable for real-time
systems, but the architecture must consider performance at the
highest level.
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CORBA
CORBA stands for Common Object Request Broker Architecture,
and has been standardized by the Object Management Group (OMG)
using an open process. CORBA is a self-describing, interoperable,
client/server, middleware specification that specifies an extensive set
of services that are used to produce “made-to-order” components.

Some of the more than 20 standard services are Naming, Event,
Transaction, Event, and Query. CORBA also specifies a neutral
Interface Definition Language (IDL), by which all inter-object com-
munication is managed.

A CORBA-based system contains four main components:

•Object Request Broker (ORB)

•CORBA Services

•CORBA Facilities

•Application Objects
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A Real-Time CORBA System
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The Real-Time CORBA 1.0 Standard
The Real-Time CORBA 1.0 specification supports fixed-priority
scheduling. It directly supports the construction of pipelined and
client-server-based distributed real-time systems. Pipelined real-time
systems are supported by the use of asynchronous one-way messages
between a “client” (a message sender) and a “server” (a message
receiver). 

Real-time operating systems differ in the number of priority levels
they support and the convention that determines whether lower val-
ues represent higher priority levels or vice versa. As a result, RT-
CORBA 1.0 provides a mapping scheme that allows applications to
use a homogeneous, portable, and cross-compatible scheme to assign
and manipulate priorities. 

Secondly, RT-CORBA supports a flexible framework to assign the
appropriate priority at which a server must process a client message.
In a pipelined system, the “server” may use its own native priority, or
inherit the priority of its client (or the highest priority of any waiting
client). In a client-server-based system, a remote client request may be
processed at a higher priority than any other normal application-pro-
cessing activity on the server node. This permits the use of the “dis-
tributed priority ceiling protocol” and is necessary to minimize the
large-duration priority inversion that can otherwise occur. Finally, RT-
CORBA provides facilities for pooling and re-using threads and
memory.
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Unified Modeling Language (UML)
Modeling and analysis of object-oriented systems has had a long and
illustrious history. DeMarco and Yourdon developed structured
analysis in the late 1970s. The mid-1980s saw behavioral models
developed by Ward Mellor and the Harel Charts by Harel. Modeling
of object-oriented systems came into vogue in the late 1980s with
OMT (Object Modeling Technique), OOSE (Object-Oriented
Software Engineering), and the Booch method. The Unified
Modeling Language (UML) seeks to bring together the benefits of
many of the above techniques under a single unifying umbrella. 

The Object Management Group (OMG) is standardizing UML and
real-time extensions to UML. OMG released Version 1.1 of UML in
1997. UML supports:

•The visual representation of objects and behavior.

•Design patterns or diagrams.

•A rich set of notations.

UML is useful in requirements and design phases of projects and pro-
vides the following basic elements as building blocks:
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UML Diagrams 

Diagrams for Requirement Definition

Use-Case Diagram
•This captures a broad view of system functionality, typically
from the end-user point of view.

Sequence Diagram 
•Illustrates a scenario.

•Scenarios are instances of use cases.

•A complex set of interactions analyzed one scenario at a time

•All messages are enumerated.

Collaboration Diagram
•The collaboration diagram is an alternate way of looking at
sequence diagrams.

•Emphasis is on objects and interfaces.

•In contrast, the sequence diagram emphasizes the message
sequence between objects.

Diagrams for Design

Deployment Diagram
•Illustrates the system architecture.

•Physical mapping of functionality.

Class Diagram
•Identifies classes and their relationships.

State Chart Diagram
•Shows states, transitions; Harel charts, Moore machines, and
Mealy machines.

Activity diagram
•Illustrates procedural flow of control, flow charts.
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Real-Time Extensions to UML

Real-time extensions to the Unified Modeling Language (UML) are
currently being standardized by the Object Management Group
(OMG), which also created CORBA and RT-CORBA. The Real-
Time Analysis and Design Working Group of the OMG is currently
specifying these real-time extensions.

The real-time extensions to UML, known as RT-UML, will include
support for schedulability analysis, stochastic performance analysis,
and representation of time and timing constraints, among other
aspects still being discussed. Diagrams to represent the timing behav-
ior of real-time and reactive systems are also likely to be in the stan-
dard.
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TimeSys Solutions for Real-Time
System Developers
TimeSys Linux/RT: The first truly real-time version of Linux was cre-
ated by TimeSys, and is now being distributed. Linux/RT offers a
complete real-time system with the reliability and stability that are
hallmarks of Linux. Available in multiple packages, Linux/RT can be
provided alone, or in combination with TimeTraceTM , described
below, to capture your application’s timing data.

Real-Time Java: TimeSys is in the process of developing a Java virtual
machine based on the Real-Time Specification for Java. This product,
the first to extend Java’s capabilities into the real-time arena, allows
real-time system designers to benefit from Java’s platform independ-
ence and object orientation.

Timing Analysis and Simulation: TimeWiz® is a sophisticated system
modeling, analysis, and simulation environment developed and mar-
keted by TimeSys Corporation for real-time systems. The software
runs on Windows NT and Windows 98. A detailed data sheet, an
application example, and a product brochure are enclosed. We also
require an annual maintenance contract priced at 15% of the product
price, which includes technical support and product upgrades. The
product comes with a full 30-day money back guarantee. 

TimeBenchTM is a friendly and visual software environment for
designing, modeling, analyzing, documenting, and visualizing the tim-
ing behavior, reusibility, and object-orientation of dynamic real-time
and dependable systems. The software incorporates TimeSys-devel-
oped extensions to RT-UML and allows users to seamlessly translate
models into source code and vice versa.

Architectural Audit : This highly recommended service consists of a
comprehensive technical evaluation of your system architecture,
including hardware and software by TimeSys experts and Application
Engineers. A detailed written report will be produced at the end of
this evaluation clearly documenting the conclusions of the audit and
recommendations (if any) to ensure that system timing constraints
will be satisfied. Both system bottlenecks and resources of low risk
will be identified, enabling the customer to focus on critical areas. 
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Training: A two-day training course at the customer site will be pro-
vided on the use of RMA (Rate-Monotonic Analysis), TimeWiz®, and
TimeTraceTM .

Timing Data Collection: TimeTraceT M provides the critical instrumenta-
tion needed to see inside your real-time system, collecting all the nec-
essary timing data essential to the successful application of RMA and
average-case simulation studies. Motivated by our experience with a
broad base of customers, we offer TimeTraceTM on a wide variety of
platforms ranging from TimeSys Linux/RT to standard real-time
operating systems such as VxWorks, pSoS, Windows NT and
Windows CE, as well as solutions that can be custom-developed for
your environment to assist in collecting the necessary timing data and
incorporating them in timing analysis.

Custom Project-Wide Catalogs: This service includes custom creation and
centralized storage of objects, properties, analysis, and simulation
models for re-use within the organization, using TimeWiz® facilities.
This customization is essential so that your architecture is accurately
modeled and its timing characteristics are accurately analyzed and
simulated in the timing analysis. 

Custom Services : We can develop custom solutions that best suit your
unique needs on open or proprietary run-time environments. This
may include the establishment of a visual and friendly environment
for precise performance measurements, or the use of appropriate
real-time middleware services such as group communications.
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TimeSys Linux/RTTM: A Real-Time OS with All
the Benefits of Linux

TimeSys Linux/RT is the first Linux-based operating system to offer
full real-time capabilities. Linux/RT incorporates the revolutionary
Resource Kernel, which offers these features:

•Fixed-priority scheduling with 256 priority levels

•Priority inheritance to avoid unbounded priority inversion

•Quality of Service (QoS) support for resource reservation

•Fine-grained control over which processes run after their
reservations expire

•High-resolution clocks and timers

•Ability to execute tasks in periodic fashion

•Stable design

In addition to running on standard computer systems. Linux/RT can
also be embedded into systems that lack disks and displays.
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TimeWiz®: An Integrated Design
Environment for Real-Time Systems

TimeWiz® is a TimeSys Corporation product specifically designed for
the construction of simple or complex real-time systems with pre-
dictable timing behavior. It lets you:

•Represent your hardware and software configurations.

•Analyze the worst-case timing behavior of your system.

•Simulate its average-case timing behavior.

•Model processors and networks for end-to-end performance.

•Chart your system parameters and generate integrated system
reports.
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TimeBenchTM: A Workbench Environment for
Design and Visualization of Real-Time Systems

TimeBench is a TimeSys tool to aid you in visualizing your system as it
goes through every phase of the development process. It allows you to:

•Represent the static hierarchies and timing information of real-
time and embedded systems visually and consistently.

•Use the object hierarchy and timing information representation to
automatically generate code for specific targets. 

•Reverse-engineer code added by the user to automatically re-gen-
erate the static hierarchy and timing information, thereby consis-
tently maintaining the visual and semantic configuration of the sys-
tem.

•Perform integrated timing analysis of the system taking the object-
orientation of the system explicitly into account.
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TimeTraceTM: A Real-Time Profiling
Environment

TimeTraceTM is a productivity enhancement tool from TimeSys
Corporation that lets you profile your real-time OS target in real-time.
With TimeTrace, you can:

•Capture execution sequence on targets efficiently.

•Display target execution sequences visually to create a “soft-
ware oscilloscope”.

•Monitor multiple targets simultaneously from a single worksta-
tion.

•Feed TimeTrace data into TimeWiz as execution time and peri-
od parameters for worst-case analysis and/or average-case
simulation.

TimeTrace currently supports Linux/RT, LynxOS, Windows NT,
Windows CE, and Real-Time Mach, an open source code real-time
operating system. Expect additional support in the future.
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Future Releases of This Handbook
If you would like a colleague or a group to receive free copies of this
handbook, please register their names with TimeSys (www.timesys.com)
and they will be immediately sent copies of the handbook.

Future versions will include new sections on:

•Dealing with Jitter

•Dealing with Distributed Event-Driven Systems

•Modeling and Analyzing An End-To-End Pipelined System

•Priority Inversion in a Distributed Client-Server System

•Modeling and Analyzing A Distributed Client-Server System

•High Availability Support

•Embedding RT-Java

•RT-Java Tools

•Disk BW Reservations

We encourage you to add your name to the TimeSys mailing list at
www.timesys.com/handbook to get future versions of this “Concise
Handbook of Real-Time Systems”. 
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Glossary of Terms and Concepts
The following definitions apply to terms used throughout this manu-
al, and are derived from the “Handbook of Real-Time Systems”. A
clear understanding of these terms is very useful for any
designer/developer of real-time systems.
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Action

Aperiodic Event

Average-Case
Response Time

Blocking

Blocking Time

Bursty Arrivals 

The smallest decomposition of a response; a
segment of a response that cannot change sys-
tem resource allocation. In TimeWiz, an action
must be bound to a (physical) RESOURCE before
it is analyzed. An action can also use zero, one
,or more logical resources.

An event sequence whose arrival pattern is not
periodic.

The average response time of a response’s jobs
within a given interval. In TimeWiz, this is
obtained through simulation. It is possible that
there is a wide discrepancy between the aver-
age- and worst-case response times for a partic-
ular task. In many real-time systems (particular-
ly for hard real-time tasks), the worst-case
response time must be within a well-specified
interval.

The act of a lower-priority task delaying the
execution of a higher-priority task; more com-
monly known as priority inversion. Such prior-
ity inversion takes more complex forms in dis-
tributed and shared memory implementations.

The delay effect (also called the “duration of
priority inversion”) caused to events with high-
er-priority responses by events with lower-pri-
ority responses.

An arrival pattern in which events may occur
arbitrarily close to a previous event, but over an
extended period of time the number of events
is restricted by a specific event density; that is,
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Data-Sharing
Policy

Deadline-
Monotonic
Scheduling
Algorithm

Deterministic
System

there is a bound on the number of events per
time interval. Bursty arrivals are modeled in
TimeWiz using their minimum interarrival time
and their resource consumption in that interval.

A policy specific to a (physical) resource that
determines how logical resources bound to the
(physical) resource can be accessed. Some
schemes do not provide any protection against
priority inversion, while others provide varying
degrees of protection. TimeWiz supports mul-
tiple data-sharing policies including FIFO (no
protection against priority inversion), PRIORITY
INHERITANCE PROTOCOL , PRIORITY CEILING
PROTOCOL , HIGHEST LOCKER PRIORITY PROTO-
COL, and KERNELIZED MONITOR (non-preemp-
tive execution) policies.

A fixed-priority algorithm in which the highest
priority is assigned to the task with the earliest
relative delay constraint (deadline) from each
instance of its arrival. The priorities of the
remaining tasks are assigned monotonically (or
consistently) in order of their deadlines.

This algorithm and the earliest-deadline sched-
uling algorithm are not the same. In this algo-
rithm, all instances of the same task have the
same priority. In the earliest-deadline schedul-
ing algorithm, each instance of the same task
has a different priority, equal to the absolute
deadline (time) by which it must be completed.
The rate-monotonic scheduling algorithm and
the deadline-monotonic algorithm are one and
the same when the relative deadline require-
ment and periods are equal (which happens
often).

A system in which it is possible to determine
exactly what is or will be executing on the
processor during system execution.
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Dynamic-Priority
Scheduling
Policy

Earliest Deadline
Scheduling

Event

Execution Time

Fixed-Priority
Scheduling
Policy

Hardware-
Priority
Scheduling Policy

Highest-Locker
Priority

Determinism is a consequence of the schedul-
ing policies supporting a group of processes.

An allocation policy that uses priorities to
decide how to assign a resource. Priorities
change from instance to instance of the same
task (and can also vary during the lifetime of
the same instance of a task). The earliest-dead-
line scheduling algorithm is an example of a
dynamic-priority scheduling policy.

A dynamic-priority assignment policy in which
the highest priority is assigned to the task with
the most imminent deadline. 

A change in state arising from a stimulus with-
in the system or external to the system; or one
spurred by the passage of time. An event is typ-
ically caused by an interrupt on an input port or
a timer expiry. See also TRACE and TRIGGER.

Amount of time that a response will consume a
CPU.

An allocation policy that uses priorities to
decide how to assign a resource. The priority
(normally) remains fixed from instance to
instance of the same task. Rate-monotonic and
deadline-monotonic scheduling policies are
fixed-priority scheduling policies.

An allocation policy in which the priority of a
request for the backplane is determined by a
hardware register on each card that plugs into
the backplane. Presumably, the hardware prior-
ity value reflects the importance of the device
that is connected to the adapter.

A DATA-SHARING POLICY in which an action
using a logical resource is executed at the high-
est priority of all actions that use the logical
resource (i.e. at the PRIORITY CEILING of the
resource). This protocol provides a good level
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Input Jitter

Kernelized
Monitor

Logical Resource

Output Jitter

Period

Periodic Event

Preemption

Priority Ceiling

Priority Ceiling
Protocol

of control over priority inversion.

The deviation in the size of the interval
between the arrival times of a periodic action.

A DATA-SHARING POLICY in which an action
using a logical resource is executed in non-pre-
emptive fashion (i.e. at kernel priority).  This
protocol provides a good level of control over
priority inversion except when one or more
actions using a logical resource has a long exe-
cution time (relative to the timing constraints of
other higher-priority tasks).

A system entity that is normally shared across
multiple tasks. A logical resource must be
bound to a physical resource like a processor,
and is modeled in TimeWiz as an action with a
mutual exclusion requirement. Also, see DATA-
SHARING POLICY.

The deviation in the size of the interval
between the completion times of a periodic
action.

The interarrival interval for a periodic event
sequence. Also, see INPUT JITTER.

An event sequence with constant interarrival
intervals. Described in terms of the period (the
interarrival interval) and a phase value.

The act of a higher-priority process taking con-
trol of the processor from a lower-priority task.

This is associated with each logical resource
and corresponds to the priority of the highest-
priority action that uses the logical resource.

A data-sharing policy in which an action using
a logical resource can start only if its priority is
higher than the PRIORITY CEILINGS of all logical
resources locked by other responses.  This pro-
tocol provides a good level of control over pri-
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Priority
Inheritance
Protocol

Priority Inversion

Rate-Monotonic
Scheduling
Algorithm

Rate-Monotonic
Scheduling

Real-Time
System

Resource

ority inversion.

A DATA-SHARING POLICY in which an action
using a logical resource executes at the highest
of its own priority or the highest priority of any
action waiting to use this resource.  This proto-
col provides an acceptable level of control over
priority inversion.

This is said to occur when a higher-priority
action is forced to wait for the execution of a
lower-priority action. This is typically caused by
the use of logical resources, which must be
accessed mutually exclusively by different
actions. Uncontrolled priority inversion can
lead to timing constraints being violated at rela-
tively low levels of RESOURCE UTILIZATION .
Also see BLOCKING and BLOCKING TIME.

Algorithm in which highest priority is assigned
to the task with the highest rate (in other words,
with the shortest period) and the priorities of
the remaining tasks are assigned monotonically
(or consistently) in order of their rates.

A special case of fixed-priority scheduling that
uses the rate of a periodic task as the basis for
assigning priorities to periodic tasks. Tasks with
higher rates are assigned higher priorities.

A system that controls an environment by
receiving data, processing it, and taking action
or returning results quickly enough to affect the
functioning of the environment at that time.

A system in which the definition of system cor-
rectness includes at least one requirement to
respond to an event with a time limitation.

A physical entity such as a processor, a back-
plane bus, a network link, or a network router
which can be used by one or more actions. A
resource may have a resource allocation policy
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Response

Responses

Task

Tracer

Trigger

Utilization

Worst-Case
Response Time

(such as rate-monotonic scheduling) and a data-
sharing policy.

A time-ordered sequence of events arising
from the same stimulus. In TimeWiz, an event
can trigger one or more actions to be executed.

Multiple time-ordered sequences of events, each
arising from a distinct event. Event sequences
that result in responses on the same resource
often cause resource contention that must be
managed through a resource allocation policy.

A schedulable unit of processing composed of
one or more actions. Synonymous with process.

A stimulus. Synonymous with a single instance
of an EVENT within TimeWiz, and is used to
represent an end-to-end data flow sequence
spanning multiple physical resources. An end-to-
end timing constraint is normally associated
with a tracer event. TimeWiz computes both
worst-case and average-case response times to a
tracer using analysis and simulation respective-
ly. Also see TRIGGER.

A stimulus with an arrival pattern. Mostly syn-
onymous with the term “EVENT” within
TimeWiz but is used to name an event whose
response consists of a chain of actions execut-
ing on, at most, a single resource. 

In TimeWiz, a trigger is bound to a (physical)
resource when one or more actions in its corre-
sponding response are bound to a (physical)
resource. Also see Tracer.

The ratio of a response's usage to its period, usu-
ally expressed as a percentage. For a CPU
resource, this is execution time divided by period.

The maximum possible response time of a
response’s jobs (instances). Also, see OUTPUT JITTER.
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