

Adaptive Information Extraction from Web Pages by Supervised Wrapper Induction

Rinaldo Lima (rjl4@cin.ufpe.br), Phd. Fred Freitas (fred@cin.ufpe.br) and Phd. Bernard Espinasse (espinasse@lsis.org)

UNIVERSIDADE FEDERAL DE PERNAMBUCO

Recife, Novembre 2009

Friends meeting at the LSIS Labs.

Outline

- **1. What is Information Extraction?**
- 2. Basic concepts in IE: type of texts and extractions
- 3. Wrapper Induction: definition and examples
- **4. Boosted Wrapper Induction**
- **5. IE as a Classification Problem**
- **6. Proposal of an IE architecture**
- 7. Experimental Results
- 8. Conclusions and Future Work

What is Information **Extraction**?

Information Extraction (EI) is the task of identifying the relevant information fragments of text from larger

documents

IE

October 14, 2002, 4:00 a.m. PT

For years, <u>Microsoft Corporation CEO Bill</u> <u>Gates</u> railed against the economic philosophy of open-source software with Orwellian fervor, denouncing its communal licensing as a "cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the opensource concept, by which software code is made public to encourage improvement and development by outside programmers. Gates himself says Microsoft will gladly disclose its crown jewels--the coveted code behind the Windows operating system--to select customers.

"We can be open source. We love the concept of shared source," said <u>Bill Veghte</u>, a <u>Microsoft VP</u>. "That's a super-important shift for us in terms of code access."

<u>Richard Stallman</u>, <u>founder</u> of the <u>Free</u> <u>Software Foundation</u>, countered saying... appropriate formats for future use auchak, 2004].

Extraction Template

NAME	TITLE	ORGANIZATION
Bill Gates	CEO	Microsoft
Bill Veghte	VP	Microsoft
Richard Stallman	founder	FreeSoft.

Type of Texts in IE

What to Extract: Single/Multiple slots

(a)	Jack Welch will retire as CEO of General Electric tomorrow. The top role at the Connecticut company will be filled by Jeffrey (b) Immelt. (c) Entity (Deletion Extra ct: Abary record. (Scenario								
<u>Single</u>	<u>entity</u> Nato filling)	(Relatio	on Extractio	nàry	<u>record</u>	cenari	o Extract		
(rem	Slate ming)			-					
Perso	n: Jack Welch	Relation Person:	n: Person-Title Jack Welch		Relation: Company:	Success General	sion l Electric		
Person:	Jeffrey Immelt	l itle:	CEO]	l itle: Out: In:	CEO Jack We Jeffrey	elsh Immelt		
Locatio	on: Connecticut	<i>Relation: Company: Location:</i>	Company-Loca General Electri Connecticut	ation ic		, ,			

Boosted Wrapper Induction

Boosted Wrapper Induction (BWI) [Freitag & Kushmerick, 2000]

- A document is treated as a sequence of tokens, and the IE task is to identify the boundaries of each type of information to be extracted
- It learns extraction rules composed only of simple contextual patterns:
 - common prefixes and suffixes of the text occurring immediately before (or after) the text fragments to be extracted

Boosted Wrapper Induction [Freitag & Kushmerik, 2000]

Centro de Informática

Examples:

(1) The following prefix and sufix

- < [<href="], [http] > determine a fore-dectector of an URL
- [.html], [">] > determine an after-detector of an URL Boundaries

http://xyz.com/index.html de

(2) top-scoring boundary detectors example

$$F_1 = \langle [\texttt{time :}], [\texttt{(Num)} \rangle \qquad \cdots \texttt{Time:} \qquad 2:00 - 3:30 \text{ PM}$$

 $A_1 = \langle [], [-\texttt{(Num) : (*) (Alph)} \rangle$

Fig. fore and after detectors <F, A> generated by the BWI algorithm [Freitag & Kushmerick, 2000].

IE as a Classification Problem: Boundary Detectors

- The IE task is to identify the **boundaries** that indicate the beginning and the end of each field.
- Formally, boundary detector d = <p, s> is a pair of prefix p and suffix s patterns that matches a boundary i if p matches the tokens before i and s matches the tokens after i.
- Associated with every detector d is a numeric confidence value C_d.
- A wrapper W = < F, A, H> consists of two sets F and A of detectors and H(k) reflects the probability that a field has length k.
- To perform extraction using W, every boundary *i* in a document is first given a fore and a aft score. W then classifies text fragment <*i*, *j*> as follows:

$$W(i, j) = \begin{bmatrix} 1, & \text{if } F(i) \ A(j) \ H(j - i) \\ 0, & \text{otherwise} \end{bmatrix}$$

IE as a Classification Problem:

BWI uses **boosting** to generate and **combine** the predictions from numerous extraction patterns.

procedure BWI(example sets S and E)

- $F \leftarrow \mathsf{AdaBoost}(\mathsf{LearnDetector}, S)$
- $A \leftarrow \mathsf{AdaBoost}(\mathsf{LearnDetector}, E)$

 $H \leftarrow \text{field length histogram from } S \text{ and } E$ return wrapper $W = \langle F, A, H \rangle$

→ Boosting is a procedure to improving the performance of a "weak" machine learning algorithm by repeatedly applying it to the training set, at each iteration modifying training example weights to emphasize examples on which the weak learner has done poorly in previous iterations [Schapire & Singer,1998].

Proposal of an IE Architecture: WEPAIES

- WEPAIES integrates the IE system TIES (*Trainable Information Extraction System*), developed at ITCirst (Instituto Trentino di Cultura).
- TIES is a Java implementation of the BWI algorithm. The extractors are based on the Boosted Wrapper Induction (BWI) algorithm.
- TIES automatically learns rules from a previously annotated corpus with a predefined set of tags (template).

Tokenization, Feature Extraction and POS tagging: Preprocessing Input text: "CALL FOR PAPERS (v4)"

_ d	liv/tok	en										
	🗍 🤣 id	📗 🖹 Text	📗 🤣 type	📗 🤣 pos 🛛	📗 🤣 start 🛛	📗 🤣 len 🛛	📗 🤣 alpha	🛛 🤣 upper_	📗 🤣 symb_	📗 🤣 single	🛛 🧔 lower	🧼 num_t
	22	CALL	word	NN	62	4	true	true				
	24	FOR	word	IN	67	3	true	true				
	26	PAPERS	word	NNS	71	6	true	true				
	28	(sym	(78	1			true	true		
	29	v	word	NN	79	1	true			true	true	
	30	4	num	CD	80	1				true		true
	31)	sym)	81	1			true	true		

Tokenization

cin.ufpe.br

Tokenization, Feature Extraction and POS tagging: Preprocessing Input text: "CALL FOR PAPERS (v4)"

L d	iv/tok	en		_								
]] 🧼 id	📗 📄 Text	🗍 🤣 type	🗍 🥔 pos	🗍 🤣 start 🛛]] 🧳 len	📗 🥔 alpha]]] 🤣 upper_]] 🤣 symb_]] 🧼 single_	🗍 🤣 lower]] 🤣 num_t
	22	CALL	word	NN	62	4	true	true				
	24	FOR	word	IN	67	3	true	true				
	26	PAPERS	word	NNS	71	6	true	true				
	28	(зуm	(78	1			true	true		
	29	v	word	NN	79	1	true			true	true	
	30	4	num	CD	80	1				true		true
	31)	sym)	81	1			true	true		

Default Feature Extraction

Tokenization, Feature Extraction and POS tagging: Preprocessing Input text: "CALL FOR PAPERS (v4)"

TTUG											
dir (tale	- 11										
arv/ tok	en										
] 🧼 id	📗 🖹 Text	🗍 🥔 type	川 🤣 pos	🃗 🤣 start]] 🧼 len]] 🤣 alpha]] 🧼 upper_]]] 🗳 symp_]] 🧼 single_	📗 🤣 lower]] 🤣 num_:
22	CALL	word	NN	62	4	true	true				
24	FOR	word	IN	67	3	true	true				
26	PAPERS	word	NNS	71	6	true	true				
28	(sym	(78	1			true	true		
29	v	word	NN	79	1	true			true	true	
30	4	num	CD	80	1				true		true
31)	sym)	81	1			true	true		
	-										

Extended Feature Extraction

Tokenization, Feature Extraction e POS tagging: Pré-processamento

Ξ	line											
	div/tok	en	_									
]] 🧼 id	📗 📄 Text	🛛 🧼 type 🛛	🛛 🧼 pos	🛛 🤣 start 🖉	🏼 🤣 len	📗 🤣 alpha	📗 🤣 upper_	🛛 🤣 symb_	🛛 🤣 single_	📗 🤣 lower	📗 🤣 num_t
	22	CALL	word	NN	62	4	true	true				
	24	FOR	word	IN	67	3	true	true				
	26	PAPERS	word	NNS	71	6	true	true				
	28	(sym	(78	1			true	true		
	29	v	word	NN	79	1	true			true	true	
	30	4	num	CD	80	1				true		true
	31)	sym)	81	1			true	true		

1	2	3	4	5	6	7	8	9	10
			Тас]	Mean		-		
POS				NN Singu		ılar Noun			
Taggi	na		IN		Preposition				
			NN	S	Plural Noun				
	Federal 0		CD		Cardi numb	nal er			cin.ufpe.b

Testbed Corpus: Seminars

Frequency distribution of the Seminar corpus

Seminars (485 docs)	Location	Speaker	Stime	Etime	Non- Entity
	643	754	980	433	157.647

<doc id='276' filename='cmu.cs.proj.vision-273_0'><0.25.4.84.12.33.15.???@???.0>

Type: cmu.cs.proj.vision

Topic: Sanderson group seminar

Dates: 27-Apr-84

Time: **<stime>**2:30**</stime>**

PostedBy: ??? on 25-Apr-84 at 12:33 from ???

Abstract:

<speaker>Alberto Elfes</speaker> will be speaking about "A Wide-Beam Sonar Mapping System" on Friday the 27th in <location>WeH 4623</location> at <stime>2:30</stime>.

</doc>

Annotated document from the Seminar Corpus

Jniversidade Federal de Pernambuco

Testbed Corpora: Jobs and CFPhtro

Jobs Announcements Corpus (300 docs)

JOBS	Platform	Language	Area	City	State	Application
	709	851	1005	659	452	590
	Title	Recruiter	Post date	Country	Salary	Req-years-e
	457	312	302	345	141	166
	Company	Des-years_e	Req-degree	Des-degree	ld	
I	298	43	83	21	304	

ANNOTATION TYPE	C	orpus Fi	REQUENC	Y
	TRAIN	%	TEST	%
workname	543	11.8	245	10.8
workacro	566	12.3	243	10.7
workhome	367	8.0	215	9.5
workloca	457	10.0	224	9.9
workdate	586	12.8	326	14.3
workpape	590	12.9	316	13.9
worknoti	391	8.5	190	8.4
workcame	355	7.7	163	7.2
confname	204	4.5	90	4.0
confacro	420	9.2	187	8.2
confhome	104	2.3	75	3.3
Τοται	4583	100	2274	100

Call for Papers Corpus Pascal Challenge 2005 (400 docs)

Universidade Federal de Pernambuco ipe.br

PASCAL CHALLENGE ON

EVALUATING MACHINE LEARNING FOR IE (2005)

Goal: Provide a *testbed* for comparative evaluation of ML-based IE. (Ireson, 2005)

Standardisation

- Data
 - Partitioning
 - Same set of features
 - Corpus pre-processed using Gate
 - No features allowed other than the ones provided
- Explicit Tasks
- Evaluation Metrics

WEPAIES: POS Influence on

Corpora

	Corpus	Prec	Recall	F1		Corpus	Prec	Recall	F1
No	Seminars	0,974	0,953	0,963	With POS	Seminars	0,971	0,964	0,967
P05	Jobs	0,945	0,778	0,853		Jobs	0,939	0,780	0,853
	CFP	0,891	0,571	0,696		CFP	0,896	0,591	0,712

CFP - Pascal Challenge

Centro

de Informática

System	Description
(LP)2	It uses Shallow NLP techniques to generalize rules beyond the flat word structure by a covering algorithm. The champion of the Pascal Challenge, 2005.
Rapier	Single-slot IE system for free texts that uses POS Information and wordnet synsets . It is based on Inductive Logic Programming [Califf & Mooney, 1999].
GATE-SVM	Performing supervised token classification based on a variant of the SVM with uneven margins [Li et al., 2003]
Yaoyong	Predecessor of GATE-SVM.
SIE	Performing supervised Token classification using a filtering instance technique in its preprocessing phase [Giuliano, 2004]

Comparative Evaluation: SEMINARS Corpus

	speaker	location	stime	etime	All Slots
WEPAIES	86,2	88,8	93,9	96,7	91,4
SIE	-	-	-	-	86,6
GATE-SVM	69,0	81,3	94,8	92,7	86,2
(LP) ²	77,6	75,0	99,0	95,5	86,0
Rapier	53,0	72,7	93,4	96,2	77,3

Comparative Evaluation: JOBS Corpus

	Slot	(LP) ²	GATE_SVM	WEPAIES	Rapier	
-	id	100,0	97,7	98,1	97,5	-
	title	43,9	49,6	67,4	40,5	
	company	71,9	77,2	78,9	69,5	
	salary	62,8	86,5	89,2	67,4	
	recruiter	80,6	78,4	86,1	68,4	
	state	86,7	92,8	96,9	90,2	
	city	93,0	95,5	96,5	90,4	
	country	81,0	96,2	98,8	93,2	
	language	91,0	86,9	88,5	80,6	
	plataform	80,5	80,1	86,9	72,5	
	application	78,4	70,2	73,1	69,3	
	area	66,9	46,8	51,6	42,4	
	reg v exp	68,8	80,8	86,4	67,1	
	des y exp	60,4	81,9	89,9	87,5	
	reg degree	84,7	87,5	78,6	81,5	
	des degree	65,1	59,2	47,6	72,2	
	post date	99,5	99,2	100,0	99,5	
<u><u><u>4</u></u><u>4</u><u>4</u><u>4</u><u>4</u><u>4</u><u>4</u><u>4</u><u>4</u><u>4</u><u>4</u><u>4</u><u></u></u>	All slots	84,1	80,8	83,8	75,1	oin ufne b
	LINE					- cm.utpe.D

ica

Comparative Slots Performance on the CFP

P – *Precision, R* – *Recall, F* – *F*-*Measure.*

		WORKSHOP								CONFERENCE		
System	Sc.	name	acro	date	home	loca	pape	noti	came	name	acro	home
Amilcare	Р	0,656	0,887	0,769	0,864	0,621	0,876	0,889	0,876	0,792	0,922	0,656
(LP) ²	R	0,241	0,884	0,632	0,619	0,402	0,851	0,889	0,865	0,422	0,888	0,280
	F	0,352	0,865	0,694	0,721	0,488	0,864	0,889	0,870	0,551	0,905	0,393
Yaoyong	Ρ	0,629	0,738	0,810	0,656	0,611	0,719	0,867	0,764	0,649	0,619	0,368
	R	0,539	0,523	0,666	0,870	0,674	0,763	0,821	0,736	0,411	0,348	0,093
	F	0,580	0,612	0,731	0,748	0,641	0,740	0,843	0,750	0,503	0,445	0,149
SIE	Ρ	<mark>0,8</mark> 52	0,733	0,850	0,672	0,812	0,841	0,921	0,911	0,795	0,667	0,556
	R	0,539	0,259	0,451	0,419	0,406	0,617	0,795	0,687	0,344	0,235	0,067
	F	0,660	0,383	0,589	0,516	0,542	0,712	0,853	0,783	0,481	0,348	0,119
WEPAIES	Р	0,889	0,906	0,918	0,718	0,990	0,906	0,925	0,849	0,953	0,930	0,706
	R	0,825	0,275	0,729	0,735	0,916	0,477	0,569	0,414	0,691	0,443	0,122
	F	0,856	0,422	0,813	0,726	0,952	0,625	0,705	0,556	0,801	0,600	0,209

Precision, Recall and F-Measure comparison on the CFP Corpus

Universidade Federal de Pernambuco

Conclusion and Future

- The results obtained allow us to conclude that the newly extended TIES system, an adaptive IE system based on supervised wrapper induction is comparable with other stateof-the-art IE systems on traditional IE tasks.
- POS Information is more helpful when our architecture is applied on non structured (free) texts.

Future work :

- the improvement of WEPAIES architecture by including new supervised machine learning algorithms, such as **Support** Vector Machines and C4.5 as learning components for new IE wrappers.
- is related to the *tokenizer and feature extraction* modules in which we intend to perform the following NLP subtasks, i.e., NER and Chunking Analysis (for English) and POS tagging for Portuguese and French languages.

References

[Califf, 1999] CALIFF, M., MOONEY, R. *Relational Learning of Pattern-Match Rules for Information Extraction*, in Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI-99).

[Espinasse, 2007] ESPINASSE, B., FOURNIER, S. & FREITAS, F. Agent and Ontology based Information Gathering on Restricted Web Domains with AGATHE. Domaine Universitaire de St Jerôme. Marseille, France. 2007.

[Freitag, 2000] FREITAG, D. & KUSHMERICK, N. *Boosted wrapper induction.* In Proceedings of 17th National Conference on Artificial Intelligence. pp.577-583. (2000).

[Kauchak, 2004] Kauchak, D., SMARR, J. & ELKAN, C. Sources of success for boosted wrapper induction. The Journal of Machine Learning Research, Vol.5, pp.499-527. MA: MIT Press. (2004).

[Ireson, 2005] IRESON, N. et al. Evaluating machine learning for information extraction. In Proceedings International Conference on Machine Learning. (2005)

[LI ET, 2004] LI Y., BONTCHEVA K., CUNNINGHAM H.: SVM BASED LEARNING SYSTEM FOR INFORMATION EXTRACTION. DETERMINISTIC AND STATISTICAL METHODS IN MACHINE LEARNING 2004: 319-339, 2004.

Publications from

th Sthe Windowski Concerning - SAC 2010 - Switzerland An Adaptive Information Extraction System based on Wrapper Induction with POS Tagging

Rinaldo Lima Centro de Informática, UFPE 50740-540 Cidade Universitária, Recife, PE, Brazil rjl4@gmail.cin.ufpe.br

Bernard Espinasse LSIS UMR CNRS 6168 Domaine Universitaire de St Jerôme, F-13997, Marseille Cedex 20, France bernard.espinasse@lsis.org Fred Freitas Centro de Informática, UFPE 50740-540 Cidade Universitária, Recife, PE, Brazil fred@cin.ufpe.br

(2) IADIS - Internation Conference - WWW/Internet 2009 - Rome - Italy WEPAIES: A Web Pages Adaptive Information Extraction System Based on Wrapper Induction with POS Tagging

(3) My Master Dissertation

Extraction d'Information Adaptative de Pages Web par Induction Supervisée d'Extracteurs

Universidade Federal de Pernambuco

Adaptive Information Extraction from Web Pages by Supervised Wrapper Induction

Questions?

Recife, May 2009

Context : MasterWeb/AGATHE Systems

It is a generic software architecture for the development of information gathering systems on the Web, for restricted domains, based on software agents that cooperate and

In [Espinasse & Freitas, 2007], the following improvemexploit ontologies → Integration of Machine Learning and Natural Language Broatsing to the set techniques to accelerate the tasks of extraction and classification to improve information gathering tasks. restricted domains.

