Copyright Notice: 
The following material is presented to ensure timely dissemination of scholarly and technical work. 
Copyright and all rights therein are retained by authors or by other copyright holders. 
All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. 
In most cases, these works may not be reposted without permission of the copyright holder.

 

Artigos completos publicados em periódicos

 

XAVIER-JÚNIOR, JOÃO C. ; FREITAS, ALEX A. ; Ludermir, Teresa B. ; FEITOSA-NETO, ANTONINO ; BARRETO, CEPHAS A.S. . An evolutionary algorithm for automated machine learning focusing on classifier ensembles: An improved algorithm and extended results. THEORETICAL COMPUTER SCIENCE, v. 805, p. 1-18, 2020

 

de Paula Neto, Fernando M. ; Ludermir, Teresa B. ; de Oliveira, Wilson R. ; DA SILVA, ADENILTON J. . Implementing Any Nonlinear Quantum Neuron. IEEE Transactions on Neural Networks and Learning Systems, v. 30, p. 1-6, 2020.

 

STOSIC, DARKO ; STOSIC, DUSAN ; Ludermir, Teresa B. ; STOSIC, TATIJANA . Multifractal behavior of price and volume changes in the cryptocurrency market. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, v. 520, p. 54-61, 2019.

 

MACÊDO, DAVID ; ZANCHETTIN, CLEBER ; OLIVEIRA, ADRIANO L.I. ; LUDERMIR, TERESA . Enhancing Batch Normalized Convolutional Networks using Displaced Rectifier Linear Units: A Systematic Comparative Study. EXPERT SYSTEMS WITH APPLICATIONS, v. 124, p. 271-281, 2019.

 

STOSIC, DUSAN ; STOSIC, DARKO ; LUDERMIR, TERESA BERNARDA ; REN, TSANG ING . Natural Image Segmentation with Non-Extensive Mixture Models. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, v. 63, p. 102598-1, 2019.

 

STOSIC, DARKO ; STOSIC, DUSAN ; Ludermir, Teresa B. ; STOSIC, TATIJANA . Exploring disorder and complexity in the cryptocurrency space. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, v. 525, p. 548-556, 2019.

 

DE PAULA NETO, FERNANDO M ; DA SILVA, ADENILTON J ; DE OLIVEIRA, WILSON R ; Ludermir, Teresa B. . Quantum probabilistic associative memory architecture. NEUROCOMPUTING, v. 351, p. 101-110, 2019.

 

STOSIC, DARKO ; STOSIC, DUSAN ; Teresa B. Ludermir ; STOSIC, TATIJANA . Nonextensive triplets in cryptocurrency exchanges. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, v. 505, p. 1069-1074, 2018.

 

STOSIC, DARKO ; STOSIC, DUSAN ; Teresa B. Ludermir ; STOSIC, TATIJANA . Collective behavior of cryptocurrency price changes. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, v. 507, p. 499-509, 2018.

 

Lucas, T.D.P. ; SILVA, T. C. P. B. E. ; VIMIEIRO, R. ; Teresa B. Ludermir . A new evolutionary algorithm for mining top-k discriminative patterns in high dimensional data. APPLIED SOFT COMPUTING, v. 59, p. 487-499, 2017.

 

STOSIC, DUSAN ; MULKERS, J. ; Van WAEYENBERGE, B. ; Teresa B. Ludermir ; MILOSEVIC, M.V. . Paths to collapse for isolated skyrmions in few-monolayer ferromagnetic films. PHYSICAL REVIEW B, v. 95, p. 214418, 2017.

 

STOSIC, D. ; STOSIC, DARKO ; ZANCHETTIN, CLEBER ; Teresa B. Ludermir ; STOSIC, BORKO . QRNN: q-Generalized Random Neural Network. IEEE Transactions on Neural Networks and Learning Systems, v. 28, p. 383-390, 2017.

 

PAPPA, GISELE LOBO ; REVOREDO, KATE CERQUEIRA ; Ludermir, Teresa B. . BRACIS 2015: Progress in Computation Intelligence in Brazil. NEUROCOMPUTING, v. 246, p. 1-2, 2017.

 

STOSIC, DUSAN ; Teresa B. Ludermir ; MILOSEVIC, M.V. . Pinning of magnetic skyrmions in a monolayer Co film on Pt(111): Theoretical characterization and exemplified utilization. PHYSICAL REVIEW B, v. 96, p. 214403, 2017.

 

de Paula Neto, Fernando M. ; de Oliveira, Wilson R. ; Teresa B. Ludermir ; SILVA, Adenilton J. . Chaos in a quantum neuron: An open system approach. NEUROCOMPUTING, v. 246, p. 3-11, 2017.

 

STOSIC, DARKO ; STOSIC, DUSAN ; LUDERMIR, TERESA ; DE OLIVEIRA, WILSON ; STOSIC, TATIJANA . Foreign exchange rate entropy evolution during financial crises. Physica. A (Print), v. 449, p. 233-239, 2016.

 

Prudêncio, Ricardo B.C. ; Ludermir, Teresa B. . Progress in intelligent systems design. Neurocomputing (Amsterdam), v. 180, p. 1-2, 2016.

 

DE OLIVEIRA, JOÃO F.L. ; Ludermir, Teresa B. . A hybrid evolutionary decomposition system for time series forecasting. Neurocomputing (Amsterdam), v. 180, p. 27-34, 2016.

 

STOSIC, DUSAN ; STOSIC, DARKO ; LUDERMIR, TERESA . Voting based q-generalized extreme learning machine. Neurocomputing (Amsterdam), v. 174, p. 1021-1030, 2016.

 

DA SILVA, ADENILTON J. ; DE OLIVEIRA, WILSON R. ; Ludermir, Teresa B. . Weightless neural network parameters and architecture selection in a quantum computer. Neurocomputing (Amsterdam), v. 183, p. 13-22, 2016.

 

DE PAULA NETO, FERNANDO M. ; DE OLIVEIRA, WILSON R. ; DA SILVA, ADENILTON J. ; Ludermir, Teresa B. . Chaos in Quantum Weightless Neuron Node Dynamics. Neurocomputing (Amsterdam), v. 183, p. 23-38, 2016.

 

DA SILVA, ADENILTON JOSÉ ; LUDERMIR, TERESA BERNARDA ; DE OLIVEIRA, WILSON ROSA . Quantum perceptron over a field and neural network architecture selection in a quantum computer. Neural Networks, v. 78, p. 55-64, 2016.

 

STOSIC, DARKO ; STOSIC, DUSAN ; LUDERMIR, TERESA ; STOSIC, TATIJANA . Correlations of multiscale entropy in the FX market. Physica. A (Print), v. 457, p. 52-61, 2016.

 

SOUSA, ARTHUR F.M. ; Prudêncio, Ricardo B.C. ; Ludermir, Teresa B. ; SOARES, CARLOS . Active Learning and Data Manipulation Techniques for Generating Training Examples in Meta-Learning. Neurocomputing (Amsterdam), v. 194, p. 45-55, 2016.

 

CAMBUIM, LUCAS F.S. ; MACIEIRA, RAFAEL M. ; NETO, FERNANDO M.P. ; BARROS, EDNA ; Ludermir, Teresa B. ; ZANCHETTIN, CLEBER . An Efficient Static Gesture Recognizer Embedded System Based on ELM Pattern Recognition Algorithm. Journal of Systems Architecture, v. 68, p. 1-16, 2016.

 

FIGUEIREDO, E.M.N. ; LUDERMIR, T.B. ; BASTOS-FILHO, C.J.A. . Many Objective Particle Swarm Optimization. Information Sciences, v. 374, p. 115-134, 2016.

 

SERGIO, ANDERSON T. ; DE LIMA, TIAGO P.F. ; Ludermir, Teresa B. . Dynamic Selection of Forecast Combiners. Neurocomputing (Amsterdam), v. 218, p. 37-50, 2016.

 

STOSIC, DARKO ; STOSIC, DUSAN ; TERESA B. LUDERMIR ; STOSIC, BORKO ; MILOSEVIC, M.V. . GPU-advanced 3D electromagnetic simulations of superconductors in the Ginzburg-Landau formalism. JOURNAL OF COMPUTATIONAL PHYSICS, v. 322, p. 183-198, 2016.

 

 

POZO, AURORA ; DE ARRUDA CAMARGO, HELOISA ; Ludermir, Teresa B. . Progress in Intelligent Systems. Neurocomputing (Amsterdam), v. 161, p. 1-3, 2015.

 

DA SILVA, ADENILTON J. ; DE OLIVEIRA, WILSON R. ; Ludermir, Teresa B. . Comments on -Quantum M-P Neural Network-. International Journal of Theoretical Physics, v. 54, p. 1878-1881, 2015.

 

 

LIMA, T. P. F. ; SILVA, A. ; TERESA B. LUDERMIR ; De Oliveira, W.R. . An automatic methodology for construction of multi-classifier systems based on the combination of selection and fusion. Progress in Artificial Intelligence, v. 2, p. 1-10, 2014.

 

 

FIGUEIREDO, E. M. N. ; TERESA B. LUDERMIR . Investigating the use of alternative topologies on performance of the PSO-ELM. Neurocomputing (Amsterdam), v. 127, p. 4-12, 2014.

 

Ludermir, Teresa B. ; ZANCHETTIN, CLEBER ; CAROLINA LORENA, ANA . Advances in intelligent systems. Neurocomputing (Amsterdam), v. 127, p. 1-3, 2014.

 

 

2013

 

FERREIRA, A. A. ; TERESA B. LUDERMIR ; Aquino, R. . An Approach to Reservoir Computing Design and Training. Expert Systems with Applications, v. 40, p. 4172-4182, 2013.

 

Ludermir, Teresa B. ; DE OLIVEIRA, WILSON R. . Particle Swarm Optimization of MLP for the identification of factors related to Common Mental Disorders. Expert Systems with Applications, v. 40, p. 4648-4652, 2013.

 

 

GOMES, GECYNALDA S. DA S. ; Ludermir, Teresa B. . Optimization of the weights and asymmetric activation function family of neural network for time series forecasting. Expert Systems with Applications, v. 40, p. 6438-6446, 2013.

 

 

LIMA, T. P. F. ; Teresa B. Ludermir . An automatic method for construction of ensembles to time series prediction. International Journal of Hybrid Intelligent Systems, v. 10, p. 191-203, 2013.

 

 

2012

Description: http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifSILVA, A. ; De Oliveira, W.R. ; LUDERMIR, T. B.. Classical and Superposed Learning for Quantum Weightless Neural Networks. Neurocomputing (Amsterdam), v. 75, p. 52-60, 2012

 

Description: http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifLUDERMIR, T. B. SOUTO, Marcílio Carlos Pereira de and VELLASCO, Marley. Automatic parameters selection in machine learning. Neurocomputing (Amsterdam), v. 75, p. 1-2, 2011.

 

PRUDÊNCIO, R. B. C. ; LUDERMIR, T. B. Combining Uncertainty Sampling methods for supporting the generation of meta-examples. Information Sciences, v. 196, p. 1-14, 2012.

 

Luciano D. S. Pacifico, Teresa Bernarda Ludermir:
Improved Evolutionary Extreme Learning Machines Based on Particle Swarm Optimization and Clustering Approaches. IJNCR 3(3): 1-20 (2012)

 

 

 

 

2011

 

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifZANCHETTIN, C. ; LUDERMIR, T. B. ; ALMEIDA, L. M. Hybrid Training Method for MLP: Optimization of Architecture and Training. IEEE Transactions on Systems, Man and Cybernetics. Part B. Cybernetics, v. 41, p. 1-13, 2011

 

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifGOMES, G. S. S. ; LUDERMIR, T. B.. Comparison of new activation functions in neural network for forecasting financial time series,  Neural Computing & Applications, v. 20, p. 417-439, 2011

 

 

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifValença, I.B. ; Lucas, T. ; LUDERMIR, T. B. ; VALENÇA, M. J. S. . Selecting variables with search algorithms and neural networks to improve the process of time series forecasting

. International Journal of Hybrid Intelligent Systems, v. 8, p. 129-141, 2011

 

 

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifLUDERMIR, T. B. ; PRUDÊNCIO, R. B. C. ; ZANCHETTIN, C. . Feature and algorithm selection with Hybrid Intelligent Techniques. International Journal of Hybrid Intelligent Systems, v. 8, p. 115-116, 2011

 

 

2010

 

ALMEIDA, L. M. ; LUDERMIR, T. B.  A multi-objective memetic and hybrid methodology for optimizing the parameters and performance of artificial neural networks, Neurocomputing (Amsterdam), v. 73, p. 1438-1450, 2010

 

ZANCHETTIN, C., MINKU, L.L.; LUDERMIR, T. B.: DESIGN OF EXPERIMENTS IN NEURO-FUZZY SYSTEMS. International Journal of Computational Intelligence and Applications, v.9, p.137-152, 2010.

 

 

2009

 

LUDERMIR, T. B. ; SOUTO, Marcílio Carlos Pereira de ; De Oliveira, W.R.  On A Hybrid Weightless Neural System. International Journal of Bio-Inspired Computation, v. 1, p. 93-104, 2009

 

GOMES, G. S. S. ; LUDERMIR, T. B. . Redes Neurais Artificiais com Funções de Ativação Complemento LOG-LOG e PROBIT para Aproximar Funções na Presença de Observações Extremas. Learning and Nonlinear Models, v. 8, p. 1-15, 2009

 

 

2008

 

CORRÊA, R. F. ; LUDERMIR, T. B. A Quickly Trainable Hybrid SOM-Based Document Organization System. Neurocomputing (Amsterdam), v. 71, p. 3353-3359, 2008

 

MAIA, A. L. S. ; CARVALHO, Francisco de Assis Tenório de ; LUDERMIR, T. B.  Forecasting models for interval-valued time series. Neurocomputing (Amsterdam), v. 71, p. 3344-3352, 2008

 

PRUDÊNCIO, R. B. ; LUDERMIR, T. B. . Selective Generation of Training Examples in Active Meta-Learning. The International Journal of Hybrid Intelligent Systems (IJHIS), v. 5, p. 59-70, 2008

 

MINKU, F. L. ; LUDERMIR, T. B.  Clustering and co-evolution to construct neural network ensembles: an experimental study. Neural Networks, v. 21, p. 1363-1379, 2008

 

SOUTO, Marcílio Carlos Pereira de ; COSTA, I. G. ; ARAUJO, D. A. S. ; LUDERMIR, T. B. ; SCHLIEP, A. Clustering Cancer Gene Expression Data: a Comparative Study. BMC Bioinformatics, v. 9, p. 497, 2008

 

 

2007

 

ZANCHETTIN, C., LUDERMIR, T. B.: Global Optimization Methods for Designing and Training Feedforward Artificial Neural Networks. Dynamics of Continuous, Discrete and Impulsive System, v.14, p.328 - 337, 2007.

 

ZANCHETTIN, C., LUDERMIR, T. B.: Wavelet filter for noise reduction and signal compression in an artificial nose. Applied Soft Computing, v.7, p.246 - 256, 2007.

 

2006

 

LUDERMIR, T. B., YAMAZAKI, A., ZANCHETTIN, C.: An Optimization Methodology for Neural Network Weights and Architectures. IEEE Transactions on Neural Networks, v.17, p.1452 - 1459, 2006.

 

CORRÊA, R. F., LUDERMIR, T. B.: Improving Self Organization of Document Collections by Semantic Mapping. Neurocomputing, v.70, p.62 - 69, 2006.

 

2005

 

SOUTO, M. C. P., LUDERMIR, T. B., De Oliveira, W.R.: Equivalence between RAM-based Neural Networks and Probabilistic Automata. IEEE Transactions on Neural Networks, v.16, p.996 - 999, 2005.

 

LACERDA, E. G. M., CARVALHO, A. C. P. L., BRAGA, A. P., LUDERMIR, T. B.: Evolutionary Radial Basis Functions for Credit Risk Assessment. Applied Intelligence, v.22, p.167 - 181, 2005.

 

ZANCHETTIN, C., LUDERMIR, T. B.: Hybrid Neural Systems for Pattern Recognition in Artificial Noses. International Journal of Neural Systems, v.15, p.137 - 149, 2005.

 

ZANCHETTIN, C., LUDERMIR, T. B.: Sistemas Neurais Híbridos para Reconhecimento de Padrões em Narizes. SBA. Sociedade Brasileira de Automática. , v.16, p.159 - 172, 2005.

 

OLIVEIRA, E. M. J., CAMPOS, P. G., LUDERMIR, T. B., CARVALHO, F. A. T.: Uma abordagem híbrida de classificação para o reconhecimento de odores petroquimicos. Revista Tecnologia da Informação. , v.5, p.65 - 79, 2005.

 

2004

 

PRUDÊNCIO, R. B. C., LUDERMIR, T. B., CARVALHO, F. A. T: A modal symbolic classifier for selecting time series models. Pattern Recognition Letters, v.25, p.911 - 921, 2004.

 

PRUDÊNCIO, R. B., LUDERMIR, T. B.: Meta-learning approaches to selecting time series models. Neurocomputing, v.61C, p.121 - 137, 2004.

 

2003

 

LACERDA, E. G. M., CARVALHO, A. C. P. L., LUDERMIR, T. B.: Model Selection via Genetic Algorithms for RBF Networks. Journal of Intelligent & Fuzzy Systems, v.13, p.111 - 122, 2003.

 

DINIZ FILHO, J., LUDERMIR, T. B.: Modeling a Particular Decision Process by Using a Modulatory Activation Function. International Journal of Neural Systems, v.13, p.111 - 118, 2003.

 

YAMAZAKI, A., LUDERMIR, T. B.: Neural Network Training with Global Optimization Techniques. International Journal of Neural Systems, v.13, p.77 - 86, 2003.

 

LUDERMIR, T. B., SOUTO, M. C. P.: Special Issue on the VIIth Brazilian Symposium on Artificial Neural Networks - Introduction by Guest Editors. International Journal of Neural Systems, v.13, p.55 - 57, 2003.

 

De Oliveira, W.R., SOUTO, M. C. P., LUDERMIR, T. B.: Turing's Analysis of Computation and Artificial Neural Networks. Journal of Intelligent & Fuzzy Systems, v.13, p.85 - 98, 2003.

 

2002

 

LUDERMIR, T. B., SOUTO, M. C. P.: The VIIth Brazilian Symposium on Neural Networks (SBRN'02). Journal of Intelligent & Fuzzy Systems, v.13, p.61 - 62, 2002.

 

LACERDA, E. G. M., CARVALHO, A. C. P. L., LUDERMIR, T. B.: Um tutorial sobre Algoritmos Genéticos. Revista de Informática Teórica e Aplicada, v.9, p.7 - 39, 2002.

 

2001

 

YAMAZAKI, A., LUDERMIR, T. B., SOUTO, M. C. P.: Classification of vintages of wine by an artificial nose using time delay neural networks. Electronics Letters, v.37, p.1466 - 1467, 2001.

 

Lacerda, E. G. M. de, Carvalho, A. de, LUDERMIR, T. B.: Evolutionary Optimization of RBF Networks. International Journal of Neural Systems, v.11, p.1 - 12, 2001.

 

SILVA, R. B. A., LUDERMIR, T. B.: Hybrid Systems of Local Basis Functions. Intelligent Data Analysis, v.5, p.227 - 244, 2001.

 

1999 - 1990

 

BRAGA, A. P., LUDERMIR, T. B.: Artificial Neural Networks in Brazil: an introduction to the special issue of IJNS. International Journal of Neural Systems, v.9, p.163 - 165, 1999.

 

NOBRE, C. N., MARTELLI, E., BRAGA, A. P., CARVALHO, A. C. P. P. L. F., REZENDE, S., BRAGA, J. L., LUDERMIR, T. B. Knowledge extraction: a comparison between symbolic and connectionist methods. International Journal of Neural Systems, v.9, p.257 - 264, 1999.

 

SOUZA, J. E. G., NETO, B.B., SANTOS, F. L., PINTO DE MELO, C., LUDERMIR, T. B.

Polypyrrole Based Aroma Sensor, Synthetic Metals, v.102, p.1296 - 1299, 1999.

 

DE SOUTO, M. C. P., ADEODATO, P. J. L., LUDERMIR, T. B.

Sequencial RAM-Based Neural Networks: Learnability, Generalization, Knowledge Extraction and Grammatical Inference. International Journal of Neural Systems, v.9, p.203 - 210, 1999.

 

LUDERMIR, T. B., CARVALHO, A. P. L., BRAGA, A. P., DE SOUTO, M. C. P.

Weightless Neural Models: A Review of Current and Past Works. Neural Computing Surveys, v.2, p.41 - 61, 1998.

 

LUDERMIR, T. B.: Estudo das Redes Neurais Une Várias Ciências. Informática Brasileira em Análise, v.1, 1997.

 

LUDERMIR, T. B., De Oliveira, W.R.: Weigthless Neural Models. Computer Standards and Interfaces, v.16, p.253 - 263, 1994.

 

LUDERMIR, T. B.: Computability of Logical Neural Networks. Journal of Intelligent Systems, v.2, p.261 - 290, 1992.

 

LUDERMIR, T. B.: Temporal Behaviour and Computability in Logical Neural Networks. Center Neural Networks Newsletter, v.1, p.05 - 07, 1991.

 

LUDERMIR, T. B.: A Simple Network for Temporal Processing. Neural Network Review, 1990.

 

 

Livros publicados

 

1. BRAGA, A. P., CARVALHO, A. C. P. L., LUDERMIR, T. B. Redes Neurais Artificiais: teoria e aplicações. LTC - Livros Técnicos e Científico, 2ª edição, 2007 p.260.

 

2. BRAGA, A. P., CARVALHO, A. P. L., LUDERMIR, T. B. Redes Neurais Artificiais: teoria e aplicações. Livros Técnicos e Científicos, 2000 p.262.

 

3. Galvão, C. de, VALENÇA, M. J. S., Vieira, V. P. P. B., DINIZ, L. S., Lacerda, E. G. M. de, Carvalho, A. de, LUDERMIR, T. B. Sistemas Inteligentes: Aplicações a Recursos Hídricos e Ciências Ambientais. Editora da Universidade Federal do Rio Grande do Sul; ABRH, 1999 p.246.

 

4. BRAGA, A. P., CARVALHO, A. P. L., LUDERMIR, T. B. Fundamentos de Redes Neurais. XII Escola de Computação - UFRJ, 1998 p.246.

 

 

Capítulos de livros publicados

 

1. CARVALHO, A. P. L., BRAGA, A. P., LUDERMIR, T. B.: Credit Card Users' Data Mining. Encyclopedia of Information Science and Technology, Idea Group Inc, 2004, v.1, p. 1-3.

 

2. LACERDA, E., CARVALHO, A. C. P. L., LUDERMIR, T. B.: Análise de Crédito utilizando Redes Neurais Artificiais, Sistemas Inteligentes - Fundamentos e Aplicações, ed. Manole, 2002, v.1, p. 473-476.

 

3. CARVALHO, A. C. P. L. F., BRAGA, A. P, LUDERMIR, T. B.: Computação Evolutiva, Sistemas Inteligentes - Fundamentos e Aplicações, Editora Manole, 2002, v.01, p. 225-248.

 

4. LUDERMIR, T. B., CARVALHO, A. C. P. L., BRAGA, A. P.: Nariz Artificial In: Sistemas Inteligentes - Fundamentos e Aplicações, Editora Manole, 2002, v.1, p. 391-393.

 

5. BRAGA, A. P, CARVALHO, A. C. P. L. F., LUDERMIR, T. B.: Radial Basis Functions: Theory and Applications, Nonlinear Modeling and Forecasting of High Frequency Financial and Economic Time Series, Kluwer Academic Publishers, 2002

 

6. BRAGA, A.P., LUDERMIR, T. B., CARVALHO, A. C. P. L. F.: Redes Neurais Artificiais, Sistemas Inteligentes - Fundamentos e Aplicações, Editora Manole, 2002, v.01, p. 141-168.

 

7. LUDERMIR, T. B., CARVALHO, A. C. P. L. F., BRAGA, A., SOUTO, M.C.P.: Sistemas Inteligentes Híbridos, Sistemas Inteligentes - Fundamentos e Aplicações, Editora Manole, 2002, v.01, p. 249-268.

 

8. CARVALHO, A. P. L., BRAGA, A. P., REZENDE, S., LUDERMIR, T. B., MARTELLI, E.: Understanding Credit Card Users Behaviour: A Data Mining Approach, Heuristic and Optimization for Konwledge Discovery, Idea Group Publishing, 2002, p. 241-262.

 

9. Lacerda, E. G. M. de, CARVALHO, A. P. L., LUDERMIR, T. B.: Evolutionary Optimization of RBF networks, Radial basis function neural networks: design and applications In: Studies in Fuzziness and Soft Computing Series, Springer-Verlag, 2001

 

10. BRAGA, A. P., CARVALHO, A. C. P. L. F., LUDERMIR, T. B., ALMEIDA, M. B., LACERDA, E.: Radial Basis Functions Networks, Nonlinear Modeling and Forecasting of High Frequency Financial and Economic Time Series, Kluwer Publications, 2001

 

11. VALENÇA, M. J. S., LUDERMIR, T. B.: Aplicações de Redes Neurais, Sistemas Inteligentes-aplicações a recursos hídricos e ciências ambientais, Editora da Universidade Federal do Rio Grande do Sul, 1999, p. 49-84.

 

12. CARVALHO, A. P. L., BRAGA, A. P., LUDERMIR, T. B.: Input-Output Modelling Of Credit Approval Data-Set Using Neural Data Mining Set, Nonlinear Modelling and Forecasting of High Frequency Financial and Economic Time Series, Kluver, 1999

 

13. VALENÇA, M. J. S., LUDERMIR, T. B.: Introdução às Redes Neurais, Sistemas Inteligentes-Aplicações a Recursos Hídricos e Ciências Ambientais, Editora da Universidade Federal do Rio Grande do Sul, 1999, p. 19-59.

 

14. BRAGA, A. P., CARVALHO, A. P. L., LUDERMIR, T. B.: Radial Basis Function: Theory  And Applications, Nonlinear Modelling and Forecasting of High Frequency Financial and Economic Time Series, Kluver, 1999

 

15. SANTOS, M. S., LUDERMIR, T. B., SANTOS, F. L., PINTO DE MELO, C., GOMES, J. E.:

Artificial Nose And Data Analysis Using Multi Layer Perceptron, Data Mining, WIT Press, Computational Mechanics Publication, 1998, p. 251-264.

 

16. LUDERMIR, T. B., BRAGA, A. P., NOBRE, C. N., CARVALHO, A. P. L.: Extracting Rules From Neural Networks: A Data Mining Approach, Data Mining, Wit Press, Computational Mechanics Publication, 1998, p. 303-314.

 

17. DE SOUTO, M. C. P., LUDERMIR, T. B., De Oliveira, W.R.: Synthesis of Probabilistic Automata in pRAM Neural Networks, Artificial Neural Networks, Spring-Verlag, 1998, p. 603-608.

 

18. De Oliveira, W.R., LUDERMIR, T. B.: Turing Machine Simulation By Logical Neural Networks, Artificial Neural Networks 2, North-Holland, 1992, p. 663-668.

 

19. LUDERMIR, T. B.: A Cup-Point Recognition Algorithm Using PLN Node, Artificial Neural Networks, North-Holland, 1991, p. 1091-1094.

 

20. LUDERMIR, T. B.: A Feedback Network for Temporal Pattern Recognition, Parallel Processing in Neural Systems and computers, North-Holland, 1990, p. 395-398.

 

 

Livros organizados

 

1. LUDERMIR, T. B., SOUTO, M. C. P.: Anais do VII Simpósio Brasileiro de Redes Neurais, Sociedade Brasileira de Computação, 2002

 

2. LUDERMIR, T. B., SOUTO, M. C. P.: Proceedings of VII Brazilian Symposium on Neural Networks,  IEEE Computer Society, 2002, v.1. p.270.

 

3. BRAGA, A. P., LUDERMIR, T. B.: Vth Brazilian Symposium on Neural Networks, IEEE Computer Society, 1998, v.1. p.260.

 

4. LUDERMIR, T. B.: III Simpósio Brasileiro de Redes Neurais, UFPE, 1996, v.1. p.313.

 

 

 

Artigos Publicados em Anais de Congressos (completo)

 

1.

ZANCHETTIN, C. ; LUDERMIR, T. B. . Hybrid Optimization Technique for Artificial Neural Networks Design. In: International Conference on Enterprise Information Systems, 2009, Milão. Proceedings International Conference on Enterprise Information Systems, 2009.

 

2.

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifFERREIRA, A. A. ; LUDERMIR, T. B. . Genetic Algorithm for Reservoir Computing Optimization.. In: International Joint Conference on Neural Networks, 2009, Atlanta. Proceedings of International Joint Conference on Neural Networks, 2009. p. 811-815.

 

3.

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifGOMES, G. S. S. ; LUDERMIR, T. B. ; ALMEIDA, L. M. . Neural networks with asymmetric activation function for function approximation. In: International Joint Conference on Neural Networks, 2009, Atlanta. Proceedings of International Joint Conference on Neural Networks. Los Alamitos : IEEE Press, 2009.

 

4.

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifSOUZA, J. R. ; LUDERMIR, T. B. ; ALMEIDA, L. M. . A Two Stage Clustering Method Combining Self-Organizing Maps and Ant K-means.. In: 19th International Conference on Artificial Neural Networks (ICANN 2009), 2009, Linassol. Lecture Notes in Computer Science. Amsterdam : Springer Verlag, 2009. v. 5768. p. 485-494.

 

5.

SOUZA, J. R. ; LUDERMIR, T. B. ; ALMEIDA, L. M. . Um método de agrupamento em dois estágios combinando mapas auto-organizáveis e ant k-médias. In: VII ENIA - Encontro Nacional de Inteligência Artificial, 2009, Bento Gonçalves. Anais do VII ENIA - Encontro Nacional de Inteligência Artificial, 2009.

 

6.

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifPRUDÊNCIO, R. B. C. ; LUDERMIR, T. B. . Active Generation of Training Examples for Meta-Regression. In: nternational Conference on Artificial Neural Networks, 2009, Linassol. Lecture Notes in Computer Science. Amsterdam : Springer Verlag, 2009. v. 5768. p. 30-39.

 

7.

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifValença, I.B. ; LUDERMIR, T. B. . Hybrid Systems for River Flood Forecasting using MLP, SOM and Fuzzy Systems. In: 19th International Conference on Artificial Neural Networks (ICANN 2009), 2009, Linassol. Lecture Notes in Computer Science. Amsterdam : Springer Verlag, 2009. v. 5768. p. 557-566.

 

8.

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifSoares, R.G.F. ; LUDERMIR, T. B. ; CARVALHO, Francisco de Assis Tenório de . An analysis of meta-learning techniques for ranking clustering algorithms applied to artificial data. In: 19th International Conference on Artificial Neural Networks (ICANN 2009), 2009, Linassol. Lecture Notes in Computer Science. Amsterdam : Springer Verlag, 2009. v. 5768. p. 131-140.

 

9.

ZARTH, A. M. F. ; LUDERMIR, T. B. . Optimization of Neural Networks Weights and Architecture: A multimodal methodology. In: International Conference on Intelligent Systems Design and. Applications, 2009, Pisa. Proceedings International Conference on Intelligent Systems Design and. Applications. Los Alamitos : IEEE Computer Press, 2009.

 

10.

PRUDÊNCIO, R. B. C. ; LUDERMIR, T. B. . Combining Uncertainty Sampling Methods for Active Meta-Learning. In: International Conference on Intelligent Systems Design and. Applications, 2009, Pisa. Proceedings International Conference on Intelligent Systems Design and. Applications. Los Alamitos : IEEE Computer Press, 2009.

 

11.

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifCORRÊA, R. F. ; LUDERMIR, T. B. . Semantic Mapping and K-means applied to Hybrid SOM-Based Document Organization System Construction. In: SAC'08 - ACM 2008 SYMPOSIUM ON APPLIED COMPUTING, 2008, Fortaleza. Proceedings of ACM 2008 SYMPOSIUM ON APPLIED COMPUTING. p. 1111-1115.

 

12.

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifSOUTO, M. C. P. ; PRUDÊNCIO, R. B. ; Soares, R.G.F. ; ARAUJO, D. A. S. ; COSTA, I. G. ; LUDERMIR, T. B. ; SCHLIEP, A. . Ranking and Selecting Clustering Algorithms Using a Meta-learning Approach. In: International Joint Conference on Neural Networks, 2008, Hong Kong. Proceedings of International Joint Conference on Neural Networks. Los Alamitos : IEEE, 2008. p. 3728-3734.

 

13.

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifSOUTO, M. C. P. ; ARAUJO, D. A. S. ; COSTA, I. G. ; Soares, R.G.F. ; LUDERMIR, T. B. ; SCHLIEP, A. . Comparative Study on Normalization Procedures for Cluster Analysis of Gene Expression Datasets. In: International Joint Conference on Neural Networks, 2008, Hong Kong. Proceedings of International Joint Conference on Neural Networks. Los Alamitos : IEEE, 2008. p. 2793-2799.

 

14.

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifFERREIRA, A. A. ; LUDERMIR, T. B. ; Aquino, R. . Investigating the Use of Reservoir Computing for Forecasting the Hourly Wind Speed in Short -term. In: International Joint Conference on Neural Networks, 2008, Hong Kong. Proceedings International Joint Conference on Neural Networks. Los Alamitos : IEEE, 2008. p. 1950-1957.

 

15.

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifSILVA, K. P. ; Soares, R.G.F. ; CARVALHO, Francisco de Assis Tenório de ; LUDERMIR, T. B. . Evolving Both Size and Accuracy of RBF Networks. In: International Joint Conference on Neural Networks, 2008, Hong Kong. Proceedings of International Joint Conference on Neural Networks. Los Alamitos : IEEE, 2008. p. 1939-1945.

 

16.

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifSoares, R.G.F. ; SILVA, K. P. ; LUDERMIR, T. B. ; CARVALHO, Francisco de Assis Tenório de . An Evolutionary Approach for the Clustering Data Problem. In: International Joint Conference on Neural Networks, 2008, Hong Kong. Proceedings of International Joint Conference on Neural Networks. Los Alamitos : IEEE, 2008. p. 1946-1951.

 

17.

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifZANCHETTIN, C. ; LUDERMIR, T. B. . Feature Subset Selection in a Methodology for Training and Improving Artificial Neural Network Weights and Connections. In: International Joint Conference on Neural Networks, 2008, Hong Kong. Proceedings of International Joint Conference on Neural Networks. Los Alamitos : IEEE, 2008. p. 1952-1959.

 

18.

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifPRUDÊNCIO, R. B. C. ; LUDERMIR, T. B. . Active Meta-learning with Uncertainty Sampling and Outlier Detection. In: International Joint Conference on Neural Networks, 2008, Hong Kong. Proceedings of International Joint Conference on Neural Networks. Los Alamitos : IEEE, 2008. p. 347-352.

 

19.

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifALMEIDA, L. M. ; LUDERMIR, T. B. . An Improved Method for Automatically Searching Near-optimal Artificial Neural Networks. In: International Joint Conference on Neural Networks, 2008, Hong Kong. Proceedings of International Joint Conference on Neural Networks. Los Alamitos : IEEE, 2008. p. 2236-2243.

 

20.

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifGuerra, S. ; PRUDÊNCIO, Ricardo Bastos Cavalcante ; LUDERMIR, T. B. . Predicting the Performance of Learning Algorithms Using Support Vector Machines as Meta-Regressors. In: 18th International Conference on Artificial Neural Networks, 2008, Praga. Lecture Notes in Computer Science - Proceedings of ICANN. Amsterdan : Springer, 2008. v. 5163. p. 523-532.

 

21.

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifLUDERMIR, T. B. ; SOUTO, Marcílio Carlos Pereira de ; De Oliveira, W.R. . Weightless Neural Networks: Knowledge-based Inference System. In: Simpósio Brasileiro de Redes Neurais, 2008, Salvador. Proceedings of Brazilian Symposium of Neural Networks. Los Alamitos : IEEE, 2008. p. 207-212.

 

22.

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifGuerra, S. ; PRUDÊNCIO, R. ; LUDERMIR, T. B. . Using Support Vector Machines to Predict the Performance of MLP Neural Networks. In: Simpósio Brasileiro de Redes Neurais, 2008, Salvador. Proceeding Brazilian Symposium Neural Networks Support Vector Machines as Meta-Regressors. Los Alamitos : IEEE, 2008. p. 201-206.

 

23.

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifSANTOS, P. M. ; PRUDÊNCIO, R. ; LUDERMIR, T. B. . Selecting Neural Network Forecasting Models Using the Zoomed-Ranking Approach. In: Simpósio Brasileiro de Redes Neurais, 2008, Salvador. Proceedings of Brazilian Symposium Neural Networks. Los Alamitos : IEEE, 2008. p. 165-170.

 

24.

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifDe Oliveira, W.R. ; SILVA, A. ; Galindo, W. ; PEREIRA, J. ; LUDERMIR, T. B. . Quantum Logical Neural Network. In: Simpósio Brasileiro de Redes Neurais, 2008, Salvador. Proceedings of Brazilian Symposium of Neural Networks. Los Alamitos : IEEE, 2008. p. 147-152.

 

25.

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifALMEIDA, L. M. ; LUDERMIR, T. B. . An evolutionary approach for tuning artificial neural network parameters. In: The 3rd International Workshop on Hybrid Artificial Intelligence Systems, 2008, Burgos. Lecture Notes in Artificial Intelligence - HAIS 2008. Amsterdan : Springer, 2008. v. 5271. p. 156-163.

 

26.

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifGOMES, G. S. S. ; LUDERMIR, T. B. . Complementary log-log and probit: activation functions implemented in artificial neural networks. In: 8th International Conference on Hybrid Intelligent Systems - HIS 2008, 2008, Barcelona. Proceedings of the 8th International Conference on Hybrid Intelligent Systems - HIS 2008. Los Alamitos : IEEE Computer Society, 2008. v. 1. p. 939-942.

 

27.

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifALMEIDA, L. M. ; LUDERMIR, T. B. . Tuning artificial neural networks parameters using an evolutionary algorithm. In: 8th International Conference on Hybrid Intelligent Systems - HIS 2008, 2008, Barcelona. Proceedings of the 8th International Conference on Hybrid Intelligent Systems - HIS 2008. Los Alamitos : IEEE Computer Society, 2008. v. 1. p. 927-930.

 

28.

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifCORRÊA, R. F. ; LUDERMIR, T. B. . Improved Semantic Mapping and SOM applied to Document Organization. In: 8th International Conference on Hybrid Intelligent Systems - HIS 2008, 2008, Barcelona. Proceedings of the 8th International Conference on Hybrid Intelligent Systems - HIS 2008. Los Alamitos : IEEE Computer Society, 2008. v. 1. p. 284-289.

 

29.

http://buscatextual.cnpq.br/buscatextual/images/curriculo/ico_doi.gifFERREIRA, A. A. ; LUDERMIR, T. B. . Using Reservoir Computing for Forecasting Time Series: Brazilian Case Study. In: 8th International Conference on Hybrid Intelligent Systems - HIS 2008, 2008, Barcelona. Proceedings of the 8th International Conference on Hybrid Intelligent Systems - HIS 2008. Los Alamitos : IEEE Computer Society, 2008. v. 1. p. 602-607.

 

30.

ALMEIDA, L. M. ; LUDERMIR, T. B. . Uma metodologia de busca por redes neurais artificiais quase-ótimas. In: Concurso de Teses e Dissertações em Inteligência Artificial, 2008, Salvador. Concurso de Teses e Dissertações em Inteligência Artificial, 2008.

 

31.

FERREIRA, A. A. ; LUDERMIR, T. B. . Algoritmo Genetico para Otimização de Reservoir Computing: Uma primeira Tentativa. In: II Workshop on Computational Intelligence (WCI), 2008, Salvador. Anais do II Workshop on Computational Intelligence (WCI). Porto Alegre : SBC, 2008.

 

32.

GOMES, G. S. S. ; LUDERMIR, T. B. . Aproximação de funções através de redes neurais artificiais com funções de ativação complemento log-log e probit. In: II Workshop on Computational Intelligence (WCI), 2008, Salvador. Anais do II Workshop on Computational Intelligence (WCI). Porto Alegre : SBC, 2008.

 

33.

VALENÇA, M. J. S. ; LUDERMIR, T. B. . Análise Comparativa entre o uso de diferentes funções de ativação para previsão de vazões com redes neurais. In: IX Simpósio de Recursos Hídricos do Nordeste, 2008, Salvador. Anais do IX Simpósio de Recursos Hídricos do Nordeste, 2008.

 

 

Before 2008

 

 

1. PRUDÊNCIO, R. B. C., LUDERMIR, T. B.: Active Learning to Support the Generation of Meta-Examples.Lecture Notes in Computer Science - ICANN 2007, Springer, 2007.

 

2. PRUDÊNCIO, R. B. C., LUDERMIR, T. B.: Active Selection of Examples for Meta-Learning. Proceddings of International Conference on Hybrid Intelligent Systems, IEEE Computer Society, 2007.

 

3. FERREIRA, A. A., Nascimento, F., Tsang, I. R., Cavalcanti, G., LUDERMIR, T. B., Aquino, R. Analysis of mammogram using self-organizing neural networks based on spatial isomorphism.  Proceedings IJCNN 2007. IEEE Computer Society, 2007.

 

4. OLIVEIRA, E. M. J., CAMPOS, P. G., LUDERMIR, T. B., CARVALHO, F. A. T., De Oliveira, W.R. Application of a Hybrid Classifier to the Recognition of Petrochemical Odors  Proceddings of International Conference on Hybrid Intelligent Systems. IEEE Computer Society, 2007.

 

5. PRUDÊNCIO, R. B. C., LUDERMIR, T. B. Aprendizagem Ativa para Seleção de Exemplos em Meta-Aprendizado.  ENIA 2007.

 

6. ALMEIDA, L. M., LUDERMIR, T. B. Automatically searching near-optimal artificial neural networks. Proceedings European Symposium on Artificial Neural Networks 2007, p.549 – 554.

 

7. ZANCHETTIN, C., LUDERMIR, T. B. Comparison of the Effectiveness of Different Cost Functions in Global Optimization Techniques. Proceedings IJCNN 2007. IEEE Computer Society, 2007.

 

8. CORRÊA, R. F., LUDERMIR, T. B. Dimensionality Reduction of very large document collections by Semantic. Proceedings of 6th Int. Workshop on Self-Organizing Maps. , 2007.

 

9. Guerra, S., PRUDÊNCIO, R. B. C., LUDERMIR, T. B. Meta-Aprendizado de Algoritmos de Treinamento para Redes Multi-Layer Perceptron,  ENIA 2007.

 

10. CARVALHO, M., LUDERMIR, T. B. Particle Swarm Optimization of Neural Network Architectures and Weights, Proceedings International Conference on Hybrid Intelligent Systems, IEEE Computer Society, 2007.

 

11. Soares, R.G.F., SILVA, K. P., CARVALHO, F. A. T., LUDERMIR, T. B. Uma Abordagem Evolucionária para a Otimização de Redes RBF, Anais do Congresso Brasileiro de Redes Neurais 2007.

 

12. SILVA, K. P., Soares, R.G.F., LUDERMIR, T. B., CARVALHO, F. A. T. Uma Abordagem Evolucionária para a Tarefa de Agrupamento de Dados, Anais do Congresso Brasileiro de Redes Neurais 2007.

 

13. ALMEIDA, L. M., LUDERMIR, T. B. A hybrid method for search near-optimal artificial neural networks, Proceedings International Conference on Hybrid Intelligent Systems, IEEE Computer Society, 2006

 

14. MAIA, A. L. S., CARVALHO, F. A. T., LUDERMIR, T. B. A hybrid model for symbolic interval time series forecasting, Lectures Notes in Computer Science - ICONIP 2006. Berlin: Springer, 2006. v.4233, p.934 - 941

 

15. CORRÊA, R. F., LUDERMIR, T. B. A Hybrid SOM-Based Document Organization System, IX Brazilian Neural Networks Symposium. IEEE Computer Society, 2006.

 

16. PRUDÊNCIO, R. B. C., LUDERMIR, T. B. A Machine Learning Approach to Define Weights for Linear Combination of Forecasts, Lectures Notes in Computer Science - ICANN 2006, v.4131. p.274 - 283

 

17. ZANCHETTIN, C., LUDERMIR, T. B. A methodology to training and optimize artificial neural networks weights and connections, Proceedings IJCNN 2006. IEEE Computer Society, p.10723 - 10730

 

18. CARVALHO, M., LUDERMIR, T. B. An Analysis of PSO Hybrid Algorithms for Feed-Forward Neural Networks Training, IX Brazilian Neural Networks Symposium. IEEE Computer Society, 2006.

 

19. MINKU, F. L., LUDERMIR, T. B. EFuNN Ensembles Construction Using a Clustering Method and a Coevolutionary Multi-Objective Genetic Algorithm, Lectures Notes in Computer Scienve - ICONIP 2006, v. 4233, p.884 - 891

 

20. MINKU, F. L., LUDERMIR, T. B. EFuNN Ensembles Construction Using CONE with Multi-objective GA, IX Brazilian Neural Networks Symposium. IEEE Computer Society, 2006.

 

 

21. MINKU, F. L., LUDERMIR, T. B. EFuNNs Ensembles Construction Using a Clustering Method and a Coevolutionary Genetic Algorithm, IEEE Congress on Evolutionary Computation 2006, p.5548 - 5555

 

22. GOMES, G. S. S., LUDERMIR, T. B. Feature selection for neural networks through binomial regression, Lectures Notes in Computer Scienve - ICONIP 2006, v.4233. p.737 - 745

 

23. GOMES, G. S. S., MAIA, A. L. S., LUDERMIR, T. B., ARAÚJO, A., CARVALHO, F. A. T. Hybrid model with dynamic architecture for forecasting time series,  Proceedings IJCNN 2006. IEEE Computer Society, p.7133 - 7138

 

24. CARVALHO, M., LUDERMIR, T. B. Hybrid Training of Feed-Forward Neural Networks with PSO,  Lecture Notes in Computer Science - ICONIP 2006, v.4233. p.1061 - 1070

 

25. PRUDÊNCIO, R. B. C., LUDERMIR, T. B. Learning Weights for Linear Combination of Forecasting Methods, IX Brazilian Neural Networks Symposium. IEEE Computer Society, 2006.

 

26. GOMES, G. S. S., LUDERMIR, T. B. Modelo Híbrido em Duas Etapas Usando Redes Neurais Artificiais e Regressão Binomial, Workshop on Computacional Intelligence, 2006.

 

27. CARVALHO, M., LUDERMIR, T. B. Particle Swarm Optimization of Feed-Forward Neural Networks with Weight Decay, Proceedings International Conference on Hybrid Intelligent Systems, IEEE Computer Society, 2006

 

28. MAIA, A. L. S., CARVALHO, F. A. T., LUDERMIR, T. B. Symbolic interval time series forecasting using a hybrid model, IX Brazilian Neural Networks Symposium. IEEE Computer Society, 2006.

 

29. ZANCHETTIN, C., LUDERMIR, T. B. The Influence of Different Cost Functions in Global Optimization Techniques, IX Brazilian Neural Networks Symposium. IEEE Computer Society, 2006.

 

30. FERREIRA, A. A., LUDERMIR, T. B. A comparative study of neural network to artificial noses, Proceedings of  IJCNN2005. IEEE Computer Society, p.2081 - 2086

 

31. FERREIRA, A. A., LUDERMIR, T. B., Comparing neural network architecture for pattern recognize system on artificial noses, Lecture Notes in Computer Science 3696- ICANN 2005. Amsterdan: Springer, 2005. p.635 - 640

 

32. MINKU, F. L., LUDERMIR, T. B., ARAÚJO, A. Computação evolucionária para otimização dinâmica de parâmetros de EFuNNs,  ENIA 2005, p.612 - 621

 

33. ZANCHETTIN, C., MINKU, F. L., LUDERMIR, T. B. Design of Experiments in Neuro-Fuzzy Systems,  The Fifth International conference on Hybrid Intelligent Systems (HIS'05), IEEE Computer Society,  p.218 - 223

 

34. MINKU, F. L., LUDERMIR, T. B. Estratégia Evolucionária e Algoritmo Genético para Otimização Dimâmica de Parâmetros de EFuNNs,  Anais do VII CBRN, 2005.

 

35. MINKU, F. L., LUDERMIR, T. B. Evolutionary Strategies and Genetic Algorithms for Dynamic, IEEE Congress on Evolutionary Computation. IEEE, 2005. p.1951 - 1951

 

36. LINS, A. P. E. S., LUDERMIR, T. B. Hybrid Optimization Algorithm for the Definition of MLP Neural Network Architectures and Weights, The Fifth International conference on Hybrid Intelligent Systems (HIS'05), IEEE Computer Society, p.149 - 154

 

37. ZANCHETTIN, C., LUDERMIR, T. B. Hybrid Technique for Artificial Neural Network Architecture and Weight Optimization, Lecture Notes in Artificial Intelligence - PKDD 2005, v.3721. p.709 - 716

 

38. CAMPOS, P. G., LUDERMIR, T. B. Literal and ProRulext: Algorithms for Rule Extraction of ANNs The Fifth International conference on Hybrid Intelligent Systems (HIS'05), IEEE Computer Society,  p.143 - 148

 

39. CAMPOS, P. G., LUDERMIR, T. B. Literal Uma Abordagem Pedagógica para Extração de Regras de RNAs,  ENIA 2005, p.1138 - 1141

 

40. VALENÇA, Mêuser Jorga da Silva, LUDERMIR, T. B., VALENÇA, A. C. B. Modelling of the rainfall-runoff relationship with artificial neural network, The Fifth International conference on Hybrid Intelligent Systems (HIS'05), IEEE Computer Society,  p.548 - 550

 

41. ARNAUD, A. L., CUNHA, R. C., LUDERMIR, T. B., ADEODATO, P. J. L. Modelo Híbrido com Redes Neurais Artificiais e Técnicas Não-Supervisionadas para o Problema de Credit Scoring, Anais do ENIA 2005, p.922 - 931

 

42. LUDERMIR, T. B., LOPES, C., LUDERMIR, A. B., SOUTO, M. C. P.

Neural Network use for the Identification of Factors Related to Common Mental, Lecture Notes in Computer Science 3696- ICANN 2005, p.653 - 658

 

43. VALENÇA, M. J. S., LUDERMIR, T. B. NEURODIARIO–  UM  MODELO  MULTIVARIADO  PARA  PREVISÃO  DE  VAZÕES MÉDIAS DIÁRIAS,  Anais do Simpósio  Brasileiro  de  Recursos  Hídricos. , 2005.

 

44. VALENÇA, Mêuser Jorga da Silva, LUDERMIR, T. B., VALENÇA, A. C. B. River Flow Forecasting for Reservoir management through Neural Networks, The Fifth International conference on Hybrid Intelligent Systems (HIS'05), IEEE Computer Society,  p.545 - 547

 

45. VALENÇA, Mêuser Jorga da Silva, LUDERMIR, T. B., VALENCA, A. River Flow Forecasting with Constructive Neural Network, Lecture Notes in Artificial Intelligence - AI 2005, v.3809. p.1031 - 1036

 

46. ZANCHETTIN, C., LUDERMIR, T. B. Sistemas Neurais Híbridos para Reconhecimento de Padrões em Narizes Artificiais, Concurso de Teses e Dissertações da SBC, 2005, p.47 - 52

 

47. ZANCHETTIN, C., LUDERMIR, T. B. Técnica Híbrida de Otimização para Pesos e Arquiteturas de Redes Neurais Artificiais,  ENIA 2005, p.902 - 911

 

48. VALENÇA, Mêuser Jorga da Silva, LUDERMIR, T. B. UM MODELO NÃO  LINEAR  PARA  AJUSTAR  AS  PREVISÕES  DE VAZÕES REALIZADAS POR MODELOS CONCEITUAIS,  Anais do Simpósio  Brasileiro  de  Recursos  Hídricos, 2005.

 

49. VALENÇA, M. J. S., LUDERMIR, T. B. A non-linear constructive neural network technique for updating of river flow forecasts, Proceedings of SBRN 2004. IEEE Computer Society, 2004. v.1.

 

50. BENANTE, R. C., ARAÚJO, A., LUDERMIR, T. B. Automatização na Escolha de Parâmetros para o Modelo Incremental GNG Usando Algoritmos Genéticos, Anais do VIII SBRN. , 2004.

 

51. FERREIRA, A. A., LUDERMIR, T. B. Comparação de arquiteturas de redes neurais artificiais para sistemas de reconhecimento de padrões em narizes artificiais, Anais do VIII SBRN. , 2004.

 

52. ALMEIDA, M. B. DE, SOUTO, M. C. P., LUDERMIR, T. B. Comparative Study of Connectionist Techniques for Implementing the Pattern Recognition System of an Artificial Nose, Proceedings of IJCNN2004. IEEE Computer Society, v.1. p.653 - 656

 

53. GOMES, A., CARVALHO, F. A. T., LUDERMIR, T. B. Comparing Metrics in Fuzzy Clustering for Symbolic Data on SODAS format, Lectures Notes in Artificial Intelligence - IBERAMIA 2004, v.3315. p.727 - 736

 

54. CORRÊA, R. F., LUDERMIR, T. B. Dimensionality Reduction by Semantic Mapping,  Proceedings of VIII SBRN. IEEE Computer Society, 2004. v.1.

 

55. CORRÊA, R. F., LUDERMIR, T. B. Dimensionality Reduction by Semantic Mapping in Text Categorization, Lectures Notes in Computer Science - ICONIP 2004, v.3316. p.1032 - 1037

 

56. ZANCHETTIN, C., LUDERMIR, T. B. Evolving Fuzzy Neural Networks Applied to Odor Recognition, Lectures Notes in Computer Science - ICONIP 2004, v.3316, p.953 - 958

 

57. ZANCHETTIN, C., LUDERMIR, T. B. Evolving Fuzzy Neural Networks Applied to Odor Recognition in an Artificial Nose, Proceedings of IJCNN 2004. IEEE Computer Society, p.675 - 680

 

58. CAMPOS, P. G., LUDERMIR, T. B. Extraindo Regras de RNAs Treinadas Usando Duas Abordagens Distintas,  Anais do VIII SBRN, 2004.

 

59. ZANCHETTIN, C., LUDERMIR, T. B. Filtro Wavelet para Redução de Ruído e Compressão de Sinal em um Nariz Artificial, Anais do VIII SBRN, 2004.

 

60. VALENÇA, Mêuser Jorga da Silva, LUDERMIR, T. B. Hydrological forecasting and updating procedures for neural, Notes in Computer Science - ICONIP 2004, v.3316, p.1304 - 1309

 

61. CAMPOS, P. G., OLIVEIRA, E. M. J., LUDERMIR, T. B., ARAÚJO, Aluízio Fausto Ribeiro

MLP Networks for Classification and Prediction with Rule Extraction Mechanism,  Proceedings of IJCNN 2004. IEEE Computer Society, p.1387 - 1392

 

62. LINS, A. P. E. S., LUDERMIR, T. B. Neighbor Generation Mechanism Optimizing the Neural Network, Notes in Computer Science - ICONIP 2004, v.3316, p.613 - 618

 

63. De Oliveira, W.R., SOUTO, M. C. P., LUDERMIR, T. B. On the Computational Universality of NARX Neural Networks, Proceedings of VIII SBRN. IEEE Computer Society, 2004. v.1.

 

64. SANTOS, P. M., LUDERMIR, T. B., PRUDÊNCIO, R. B. C. Seleção de Modelos de Previsão de Séries Temporais baseada em Informações de Performance, Anais do VIII SBRN, 2004.

 

65. SANTOS, P. M., LUDERMIR, T. B., PRUDÊNCIO, R. B. C. Selection of Time Series Forecasting Models based on Performance, Fourth International Conference on Hybrid Intelligent Systems (HIS04). IEEE Computer Society, p.366 - 371

 

66. ZANCHETTIN, C., LUDERMIR, T. B. Sistemas Neurais para Classificação de Odores em um Nariz Artificial, Anais do VIII SBRN, 2004.

 

67. PRUDÊNCIO, R. B. C., LUDERMIR, T. B. Using Machine Learning Techniques to Combine Forecasting Methods, Lecture Notes in Artificial Intelligence - AI 2004, v.3339. p.1122 - 1127

 

68. CORRÊA, R. F., LUDERMIR, T. B. Web Documents Categorization using Neural Networks, Notes in Computer Science - ICONIP 2004, v.3316, p.758 - 763

 

69. ZANCHETTIN, C., LUDERMIR, T. B. A Neuro-Fuzzy Model Applied to Odor Recognition in an Artificial Nose, Hybrid Intelligent Systems, IOS Press, 2003. v.1. p.917 - 926

 

70. AMORIM, B., ZANCHETTIN, C., VASCONCELLOS, D., VASCONCELOS, G., LUDERMIR, T. B., ARAÚJO, A. Avaliação de um Modelo Neuro-difuso para Classificação de Padrões, Seleção de Atributos e Extração de Regras, Anais do IV ENIA, 2003.

 

71. ZANCHETTIN, C., LUDERMIR, T. B., YAMAZAKI, A. Classification of Gases from the Petroliferous Industry by an Artificial Nose with Neural Network, Proceedings of ICANN/ICONIP'03. , 2003. p.208 - 211

 

72. PRUDÊNCIO, R. B. C., LUDERMIR, T. B., CARVALHO, F. A. T. Neural Network Hybrid Learning: Genetic Algorithms & Levenberg-Marquadt, 26th Annaul Conference of the Gesellschaft fur Klassifikation, 2002, p.464 - 472

 

73. LUDERMIR, T. B., YAMAZAKI, A. Neural Networks for Odor Recognition in Artificial Noses,  IJCNN 2003, IEEE Computer Society, p.143 - 148

 

74. LOPES, C., LUDERMIR, T. B., LUDERMIR, A. B. Rede Neural Artificial e Regressão Logística: Uma abordagem comparativa para análise de fatores relacionados a Transtornos Mentais Comuns, Anais do IV ENIA, 2003.

 

75. LOPES, C., LUDERMIR, T. B., LUDERMIR, A. B. Rede Neural Artificial e Simulated Annealing: Uma alternativa à Regressão Logística para identificação de fatores relacionados a Transtornos Mentais Comuns, Anais do Simpósio Brasileiro de Automação Inteligente, 2003, p.207 - 212

 

76. PRUDÊNCIO, R. B. C., LUDERMIR, T. B., CARVALHO, F. A. T. Seleção de Modelos de Séries Temporais Utilizando Meta-Protótipos, Anais do IV ENIA, 2003.

 

77. PRUDÊNCIO, R. B. C., LUDERMIR, T. B. Selecting and Ranking Time Series Models Using the NOEMON Approach, Lectures Notes in Computer Science - ICANN/ICONIP'03, 2003.

 

78. ZANCHETTIN, C., LUDERMIR, T. B., Wavelet Filter for Noise reduction and Signal Compression in an Artificial Nose International Conference on Hybrid Intelligent Systems, IOS Press, 2003, p.907 – 916.

 

79. Lacerda, E. G. M. de, LUDERMIR, T. B., CARVALHO, A. P. L. A Study of Crossvalidation and Holdout as Objective Functions for Genetic Algorithms, VII Brazilian Symposium on Neural Networks, IEEE Computer Society, 2002. v.1, p.118 – 123.

 

80. VANDERLEY FILHO, D., SANTOS, M. A., VALENÇA, M. J. S., LUDERMIR, T. B. Apoio ao Diagnóstico de LER/DORT Utilizando um Modelo Fuzzy, Anais VII SBRN, 2002, p.131 – 136.

 

81. CORRÊA, R. F., LUDERMIR, T. B. Categorização Automática de Documentos: Estudo de Caso Anais VII SBRN, 2002, p.17 – 22.

 

82. OLIVEIRA, E. M. J., LUDERMIR, T. B. Comparando as Redes NARX com o Modelo Random Walk na Previsão do IBOVESPA Anais VII SBRN, 2002, p.49 – 54.

 

83. OLIVEIRA, E. M. J., LUDERMIR, T. B. Forecasting the IBOVESPA Using NARX Networks, Sixth International Conference on Knowledge - Based Intelligent Information & Engineering Systems, 2002. p.301 - 305

 

84. VANDERLEY FILHO, D., SILVA, A. F. D. E., VALENÇA, M. J. S., LUDERMIR, T. B. Gerenciamento da Fila Única para Transplante de Órgãos com Abordagem FUZZY, Terceiro Congresso de Lógica Aplicada à Tecnologia, 2002.

 

85. YAMAZAKI, A., LUDERMIR, T. B., SOUTO, M. C. P. Global Optimization Methods for Designing and Training Neural Networks VII Brazilian Symposium on Neural Networks, IEEE Computer Society, 2002, v.1, p.136 – 141.

 

86. OLIVEIRA, J. C. M. DE, SOUTO, M. C. P., LUDERMIR, T. B. Implemetação de Autômatos probabilísticos em Redes Neurais sem Pesos, p.74 – 80.

 

87. DINIZ FILHO, J., LUDERMIR, T. B. Interação Modulatória como Suporte à Modelagem das Bases Neurais da Decisão, Anais VII SBRN, 2002, p.81 - 92

 

88. De Oliveira, W.R., SOUTO, M. C. P., LUDERMIR, T. B. Neural Turing Machines with Finite Memory VII Brazilian Symposium on Neural Networks, IEEE Computer Society, 2002, v.1, p.67 - 72

 

89. VALENÇA, M. J. S., LUDERMIR, T. B. NeuroInflow: The New Model to Forecast Average Monthly Inflow VII Brazilian Symposium on Neural Networks, IEEE Computer Society, 2002, v.1, p.74 - 79

 

90. YAMAZAKI, A., LUDERMIR, T. B., SOUTO, M. C. P. Optimization of neural networks weights and architectures for odor recognition using simulated annealing, IJCNNIEEE Press, 2002. p.800 - 806

 

91. LOPES, C., LUDERMIR, T. B., SOUTO, M. C. P., LUDERMIR, A. B. Rede Neural Artificial para análise de fatores relacionados a Transtornos Mentais Comuns Anais VII SBRN, 2002, p.43 - 48

 

92. VALENÇA, M. J. S., LUDERMIR, T. B. Redes Compostas por Blocos de Regressões Sigmóides não Lineares com Aplicação na Classificação de Tumores de Mama,  Anais do II Congresso Brasileiro de Computação. , 2002.

 

93. PRUDÊNCIO, R. B. C., LUDERMIR, T. B. Selection of Models for Times Series Prediction via Meta-Learning, Second International Conference on Hybrid Intelligent Systems. , 2002. p.74 - 83

 

94. VANDERLEI FILHO, D., VALENÇA, M. J. S., LUDERMIR, T. B. Um Modelo de Previsão Baseado em Inteligência Artificial na Gestão de Bibliotecas Universitárias, Anais do XII Seminário Nacional de Bibliotecas Universitárias da América Latina e do Caribe. , 2002.

 

95. VANDERLEI FILHO, D., VALENÇA, M. J. S., LUDERMIR, T. B., SILVA, G. P. F. Uma Proposta FUZZY na Avaliação de Desempenho de Bibliotecas Universitárias Brasileiras,  Anais do XII Seminário Nacional de Bibliotecas Universitárias da América Latina e do Caribe. , 2002.

 

96. BARBOSA, M. S., LUDERMIR, T. B., SANTOS, M., SANTOS, F., SOUZA, J.E., MELO, C. P. Uma RBF para classificar gases da indústria petrolífera Anais VII SBRN, 2002, p.125 – 130.

 

97. De Oliveira, W.R., DE SOUTO, M. C. P., LUDERMIR, T. B. Agent-Environment Approach to the simulation of Turing Machines by Neural Networks, IJCNN 2001, IEEE,  v.1, p.612 – 620.

 

98. YAMAZAKI, A., LUDERMIR, T. B. Classificação de Safras de Vinho por um Nariz Artificial com Redes Neurais, ENIA 2001, p.1 – 10.

 

99. YAMAZAKI, A., LUDERMIR, T. B. Classification of Vintages of Wines by an Artificial Nose with Neural Networks, ICONIP 2001, IOS Press, p.184 – 187.

 

100. SOUTO, M. C. P., De Oliveira, W.R., LUDERMIR, T. B. Computational Complexity and Pyramidal Architecture, ICONIP 2001, IOS Press, p.1338 – 1343.

 

101. VALENÇA, M. J. S., LUDERMIR, T. B. Constructive Neural Networks in Forecasting Weekly River Flow, ICCIMA – IEEE 2001, v.1, p.271 – 275.

 

102. PRUDÊNCIO, R., LUDERMIR, T. B. Design of Neural Networks for Time Series Prediction Using Case-Initialized Genetic Algorithms ICONIP 2001, IOS Press, p.990 – 995.

 

103. VALENÇA, M. J. S., LUDERMIR, T. B. Efficient Higher-order Constructive Neural Networks for Function Approximation ITCC 2001.

 

104. PRUDÊNCIO, R., LUDERMIR, T. B. Evolutionary Design of Neural Networks: Application to River Flow Prediction, International Conference on Artificial Intelligence and Applications. Acta Press, 2001, p.56 – 61.

 

105. VALENÇA, M. J. S., LUDERMIR, T. B. Multivariate Modelling of Water Resources Time Series Using Constructive Neural Networks,  V CBRN, 2001. p.163 – 168.

 

106. VALENÇA, Mêuser Jorga da Silva, LUDERMIR, T. B. Previsão de Vazões de Longo Prazo Utilizando Redes Neurais,XVI Seminário Nacional de Produção e Transmissão de Energia Elétrica, 2001. p.1 – 6.

 

107. VALENÇA, M. J. S., LUDERMIR, T. B. Redes Compostas por Blocos de Regressões Sigmóides Não-lineares: Uma eficiente rede de alta ordem com aplicações na previsão de séries temporais V CBRN, 2001. p.67 – 72.

 

108. VALENÇA, M. J. S., LUDERMIR, T. B.

Bankruptcy prediction by nonlinear sigmoidal regression blocks networks, IJCNN 2000.

 

109. SOUZA, J. E. G., NETO, B. B., SANTOS, F. L., MELO, C. P., SANTOS, M. S., LUDERMIR, T. B. Desenvolvimento de sensores de aroma baseados em filmes de polipirrol,II Simpósio Nacional de Instrumentação Agropecuária, 2000, p.91 - 101

 

110. SOUTO, M. C. P., LUDERMIR, T. B., CAMPOS, M. A. Encoding of probabilistic automata into TAM-based Neural Networks, IJCNN 2000.

 

111. Lacerda, E. G. M. de, Carvalho, A. de, LUDERMIR, T. B. Evolutionary Optmization of RBF Networks, VI Brazilian Symposium on Neural Networks, IEEE Computer Society, 2000, v.1, p.219 – 224.

 

112. DINIZ FILHO, J., LUDERMIR, T. B. Modelling modulatory aspects in association process Sixth Neural Computation and Psichology Workshop-Perspectives in Neural Computing Series, Springer-Verlag, 2000.

 

113. VALENÇA, M. J. S., LUDERMIR, T. B. Monthly steamlow forecasting using an Neural Fuzzy Network Model, IJCNN 2000.

 

114. VALENÇA, M. J., LUDERMIR, T. B.Monthly streamflow forecasting using an Neural Fuzzy Network Model VI Brazilian Symposium on Neural Networks, IEEE Computer Society, 2000, v.1, p.117 – 119.

 

115. VALENÇA, M. J., LUDERMIR, T. B. Neural Networks vs. PARMA Modelling: case studies of river flow prediction VI Brazilian Symposium on Neural Networks, IEEE Computer Society, 2000, v.1, p.113 – 116.

 

116. VALENÇA, M. J. S., LUDERMIR, T. B. Neural Networks vs. PARMA modelling: case studies of river flow prediction, IJCNN 2000.

 

117. SANTOS, F. L., SOUZA, J. E. G., SANTOS, M. S., LUDERMIR, T. B., NETO, B. B., SANTOS, C. G., MELO, C. P. Novo Nariz Artificial Baseado a Tecnologia de Filmes Orgânicos Finos, VXXIII Encontro Nacional de Física da Matéria Condensada, 2000. p.213 – 213.

 

118. SILVA, R. B. A., LUDERMIR, T. B. Obtaining simplified rule bases by hybrid learning, Seventeenth International Conference on Machine Learning, 2000.

 

119. De Oliveira, W.R., DE SOUTO, M. C. P., LUDERMIR, T. B. On an alternative implementation of Turing Machine into a Neural Network, International Conference on Intelligent Tecnologies. , 2000.

 

120. SANTOS, M. S., LUDERMIR, T. B., SANTOS, F. L. Proposta de um Nariz Artificial com Inspiração Biológica VI Brazilian Symposium on Neural Networks, 2000, v.2, p.1 – 10.

 

121. VALENÇA, M. J. S., LUDERMIR, T. B., VALENCA, A., VASCONCELOS, I. Sistema de apoio à decisão para a operação hidráulica de Sobradinho incorporando tendências macro-climáticas utilizando redes neurais, Simpósio Nordestino de Recursos Hídricos. ABRH, 2000, p.07 – 17.

 

122. VALENÇA, M. J. S., LUDERMIR, T. B. Estratégia Operacional de um Reservatório utlizando Redes Neurais e Algoritmos Genéticos, CIER 99.

 

123. VALENÇA, Mêuser Jorga da Silva, LUDERMIR, T. B. Multiplicative-additive neural networks with active neurons, IJCNN 99, IEEE Computer Society.

 

124. SILVA, R. B. A., LUDERMIR, T. B. Neural Netwoks Methods for Rule Induction, IJCNN 99, IEEE Computer Society.

 

125. VALENÇA, M. J. S., LUDERMIR, T. B. Redes Neurais na Previsão de CIER 99.

 

126. BARROS, M. M., LUDERMIR, T. B., VALADARES, J. L. F. Rule extraction from boolean artificial neural networks, IJCNN 99, IEEE Computer Society.

 

127. VALENÇA, M. J. S., LUDERMIR, T. B. Self-organization sigmoidal blocks networks, IJCNN 99, IEEE Computer Society.

 

128. VALENÇA, M. J. S, LUDERMIR, T. B. Self-organization sigmoidal blocks networks, ICCIMA'99, IEEE Computer Society, p.60 – 64.

 

129. VALENÇA, M. J. S, LUDERMIR, T. B. Uma Rede Neural Construtiva com Atualização Dinâmica dos Pesos, IV CBRN , 1999, p.114 - 117

 

130. SANTOS, M. S., LUDERMIR, T. B. Using Factorial Design to Optmise Neural Networks, IJCNN 99, IEEE Computer Society.

 

131. SOUZA, J. E. G., NETO, B.B., SANTOS, F. L., MELO, C. P., LUDERMIR, T. B.

Desenvolvimento de Sensores de Aroma Baseados Em Filmes de Polypirrol, II Simpósio Nacional de Instrumentação Agropecuária, 1998. p.3.

 

132. NOBRE, C. N., BRAGA, A. P., CARVALHO, A. P. L., LUDERMIR, T. B. Extração de Conhecimento: Uma Comparação Entre Os Métodos Clássico e Conexionista V Brazilian Symposium on Neural Networks, 1998, v.2, p.126 – 131.

 

133. BARROS, M. M., SOUZA, G. M., LUDERMIR, T. B. Extração de Regras Em Uma Rede Neural Booleana Utilizando O Modelo RAM, V Brazilian Symposium on Neural Networks, 1998, v.2, p.121 – 125.

 

134. LUDERMIR, T. B., De Oliveira, W.R. Extractin Rules From Boolean Neural Networks ICONIP98, IOS Press, 1998. v.3. p.1666 – 1669.

 

135. LUDERMIR, T. B. Extracting Rules From Feedforward Boolean Neural Networks, V Brazilian Symposium on Neural Networks, IEEE Computer Society, 1998, v.1, p.61 – 66.

 

136. BARROS, M. M., SOUZA, G. G., LUDERMIR, T. B. Features Extraction on Boolean Artificial Neural Networks, 3rd International Conference on Computation Intelligence and Neural Science. Association for Intelligent Machinery, 1998. p.99 – 102.

 

137. SANTOS, F. L., MELO, C. P., SOUZA, J. E. G., SANTOS, M. S., LUDERMIR, T. B. Nariz Eletrônico À Base de Polypirrol Condutor, XVI Encontro de Físicos do Norte e Nordeste, 1998.

 

138. SOUZA, J. E. G., NETO, B. B., SANTOS, F. L., PINTO DE MELO, C., SANTOS, F. L., LUDERMIR, T. B. Polypyrrole Based Aroma Sensor, International Conference of Synthetic Metals, 1998, p.137.

 

139. VALENÇA, M. J., LUDERMIR, T. B. Previsão de Demanda Máxima Mensal Utilizando Um Modelo Auto-Organizável, V Brazilian Symposium on Neural Networks, 1998, v.2, p.311 – 314.

 

140. VALENÇA, Mêuser Jorga da Silva, LUDERMIR, T. B. Self-Organizing Modeling in Forecasting Daily River Flows V Brazilian Symposium on Neural Networks, 1998, v.2,  p.210 – 214.

 

141. VALENÇA, Mêuser Jorga da Silva, LUDERMIR, T. B. Uma Nova Rede Neural Polinominal Com Aplicação Na Previsão de Vazões V Brazilian Symposium on Neural Networks, 1998, v.2, p.273 – 278.

 

142. SANTOS, M. S., LUDERMIR, T. B., SANTOS, F. L., PINTO DE MELO, C., GOMES, J. E. Usando Um Nariz Artificial Para Reconhecer Safras de Vinho, V Brazilian Symposium on Neural Networks, 1998, v.2, p.253 – 258.

 

143. MEDEIROS, C. A., LUDERMIR, T. B., De Oliveira, W.R. Avaliação do Aprendizado de Caracteres Em Redes Neurais Sem Pesos, III Simpósio Brasileiro de Automação Inteligente, 1997, p.388 – 393.

 

144. SANTOS, M. S., LUDERMIR, T. B. Construção de Um Nariz Artificial Usando Redes Neurais, IV Brazilian Symposium on Neural Networks, 1997, v.2, p.71 – 73.

 

145. DE LIMA NETO, F. B., SANTOS, M. S., LUDERMIR, T. B. Estudo Comparativo de Desempenho das Topologias de Redes Neurais: MLP e Cascade-Correlation Em Problemas Reais de Classificação, III CBRN, 1997, p. 493 – 498.

 

146. LUDERMIR, T. B., De Oliveira, W.R. Extração de Regras de Redes Booleanas Com Realimentação IV Brazilian Symposium on Neural Networks, 1997, p.112 – 114.

 

147. LUDERMIR, T. B., De Oliveira, W.R., SANTOS, A. Q. Implementação Neural de Um Analisador Sintático, III CBRN, 1997, p.244 – 249.

 

148. DE LIMA NETO, F. B., LUDERMIR, T. B. Suporte A Decisão Para A Colheita de Cana de Açúcar, IV Brazilian Symposium on Neural Networks, 1997, p.27 – 31.

 

149. LUDERMIR, T. B., CARVALHO, E. B., VASCONCELOS, G. C., BORGES, D. L. Redes Neurais: Filosofia, Teoria, Modelagem e Aplicações, Apostila do curso ministrado na Jornada de Atualização em Informática do Congresso da SBC, 1996.

 

150. LUDERMIR, T. B., De Oliveira, W.R., SANTOS, A. Q. Um Analisador Sintático Neural Para O Pascal, III Brazilian Symposium on Neural Networks, 1996.

 

151. SILVA, S. L., LUDERMIR, T. B. A Adequacidade de Uma Nova Rede Ram-Based Recorrente Para Reconhecimento de Sentenças de Linguagens Regulares. II Brazilian Symposium on Neural Networks, 1995. p.153 – 158.

 

152. MEDEIROS, C. A., LUDERMIR, T. B. Avaliação do Aprendizado de Redes Neurais Sem Pesos. II Brazilian Symposium on Neural Networks, 1995. p.159 – 164.

 

153. SILVA, S. L., LUDERMIR, T. B. Implementing Finite State Automata In Recurrent Ram-Based Networks. ICANN95. , 1995. p.461 – 466.

 

154. SOUTO, M. C. P., GUIMARÃES, K. S., LUDERMIR, T. B. Learning And Generalization In Pyramidal Architectures, II Simpósio Brasileiro de Automação Inteligente, 1995. p.225 – 230.

 

155. SOUTO, M. C. P., GUIMARÃES, K. S., LUDERMIR, T. B. On The Intractability of Loading Pyramidal Arquitectures, International Conference Artificial Neural Networks-IEE, 1995, p.189 – 194.

 

156. SILVA, S. L., LUDERMIR, T. B. Regular Language Recognition By Recurrent RAM-Based Networks, Fifth Irish Neural Network Conference, 1995.

 

157. LUDERMIR, T. B., De Oliveira, W.R. Taxonomy And Description Of Weightless Neural Systems, SEMISH'95 / CLEI'95, 1995, p.825 – 837.

 

158. SOUTO, M. C. P., GUIMARÃES, K. S., LUDERMIR, T. B. Issues on The Complexity of Training Weightless Neural Networks, I CBRN, 1994. p. 9 – 14.

 

159. LUDERMIR, T. B., De Oliveira, W.R. Automata And Weightless Neural Networks, Conferência Latina Americana de Informática, 1993. p. 89 – 105.

 

160. LUDERMIR, T. B. Computability and Learnability of Artificial Neural Networks. I Simpósio Brasileiro de Automação Inteligente, 1993. p.1 – 9.

 

161. LUDERMIR, T. B. Learning Algorithms for Cut-Point Neural Networks, X SBIA, 1993. p.433 – 443.

 

162. LUDERMIR, T. B., De Oliveira, W.R. Training Strategies For Weightless Neural Networks, IJCNN 93, IEEE Computer Society, p.2731 – 2734.

 

163. LUDERMIR, T. B. Logical Networks Capable of Computing Weighted Regular Languages. IJCNN 91, IEEE Computer Society,  p.1687 – 1692.

 

164. LUDERMIR, T. B. Logical Neural Nets And Distributed Implementations Of Weighted Regular Languages. Second International Conference on Artificial Neural Networks. IEEE Computer Society, 1991. p.158 – 162.

 

165. LUDERMIR, T. B. Relating Logical Neural Networks to Conventional Models of Computation, IJCNN 91. IEEE Computer Society, p.101 – 104.

 

166. LUDERMIR, T. B. Stability And Temporal Pattern Recognition. IJCNN 90. IEEE Computer Society, p.428 – 431.