

Federal University of Pernambuco

Center of Informatics

BSc Computer Science

CEPlin: A Complex Event Processing Framework

for Kotlin

Jonas de Araújo Lins

Undergraduate Thesis

Supervisor: Kiev Santos da Gama

Recife

November, 2018

Federal University of Pernambuco

Center of Informatics

BSc Computer Science

 Jonas de Araújo Lins

CEPlin: A Complex Event Processing Framework

for Kotlin

Thesis submitted to the Center of Informatics

of the Federal University of Pernambuco as

partial requirement for the degree of Bachelor

of Science in Computer Science.

Supervisor: Kiev Santos da Gama

Recife

November, 2018

Acknowledgements

 A very special thank you to my parents, my sister, my girlfriend and those who

supported me during this long journey. A thank you to my friends who made my college

routines funnier. I would also like to thank Kiev for the patience and comprehension during

this work.

Abstract

Reactive applications has been gaining traction in the industry due to the ever increasing

demand for interactive systems of information that reacts to the user in a timely manner such

as mobile apps, web systems, sensor networks, monitoring system, and others. Therefore,

many approaches have been adopted by different communities in order to develop such

applications. Amongst many of them, we can highlight Reactive Languages and Complex

Event Processing due their similarities that were identified by previous researches. However,

there are few solutions available that integrates the best of both solutions. In this work, the

goal is to implement and publish a new framework written in Kotlin and using reactive

programming in order to make the development of CEP applications easier.

Keywords: Reactive Programming, Complex Event Processing, Event-Driven Programing.

Resumo

Aplicações reativas têm se tornado cada vez mais presentes devido a crescente demanda de

sistemas interativos e em tempo real como aplicativos móveis, sistemas web, redes de

sensores, sistemas de monitoramento, entre outros. Portanto, várias abordagens têm sido

adotadas para desenvolver tais aplicações, dentre elas, podemos destacar as Linguagens

Reativas (ou RL, do inglês Reactive Language) e o Processamento de Eventos Complexos

(ou CEP, do inglês Complex Event Processing). Devido a semelhanças identificadas em

pesquisas entre CEP e RLs, é possível implementar conceitos de CEP utilizando programação

reativa, porém ainda não há uma vasta cobertura de soluções que utilizem as duas abordagens

de forma complementar. Neste trabalho, o objetivo será desenvolver e disponibilizar um

framework escrito em Kotlin, utilizando programação reativa, para facilitar o

desenvolvimento de aplicações que utilizem CEP.

Palavras-chave: Programação Reativa, Processamento de Eventos Complexos, Programação

Orientada a Eventos.

List of Figures

Figure 1 - CEP Application Flow on the Healthcare Example ……………………………. 11

Figure 2 - Figure 2 – ReactiveX Operations over Stream …………………………………. 12

Figure 3 - A Comparison of how CEP and RLs Implement the Five Phases of a Reactive

Behavior [1] ………………………………………………………………………………… 13

Figure 4 - Framework high-level architecture (Adapted from Guedes, 2017, p. 25) [2] …..17

Figure 5 - CEPlin UML class diagram …………………………………………………….. 19

Figure 6 - TouchEvent class that models the user screen touches ………………………… 21

Figure 7 - EventManager instance for TouchEvent ………………………………………...21

Figure 8 - Horizontal gesture rule using sequence operator ………………………………..22

Figure 9 - Horizontal gesture rule using ReactiveX operators …………………………….. 22

Figure 10 - ProximityEvent class that models the phone proximity to an object …………. 23

Figure 11 - AccelerationEvent class that models the phone proximity to an object ……….23

Figure 12 - EventManager instances for ProximityEvent and AccelerationEvent ………... 24

Figure 13 - Phone in pocket action rule using CEPlin operators ………………………….. 24

Figure 14 - Phone in pocket action rule using ReactiveX operators ………………………. 25

List of Tables

Table 1 - Available Operators. Summarized from Cugola and Margara, 2012 [3] ……….. 14

Table 2 - Implemented Operators ………………………………………………………….. 20

Table 3 - Metrics for the horizontal gesture case ………………………………………….. 23

Table 4 - Metrics for the phone in pocket action case ……………………………………...25

List of Acronyms

CEP Complex Event Processing

RL Reactive Language

IFP Information Flow Processing

LOC Lines of Code

Contents

1. Introduction .. 10

2. Background ... 11

2.1. Complex Event Processing .. 11

2.2. Reactive Language .. 12

2.3. CEP and Reactive Language integration ... 13

2.4. CEP Operators ... 14

2.5. Kotlin .. 16

3. Implementation... 17

3.1. Proposal .. 17

3.2. Core entities .. 18

3.3. Libraries and tools ... 19

3.4. Implemented operators .. 19

4. Use cases .. 21

4.1. Gesture sequence detection ... 21

4.2. Phone in pocket action detection ... 23

4.3. Discussion ... 25

5. Conclusion ... 27

6. References ... 28

10

1. Introduction

A reactive application can be defined as software capable of detecting changes and

reacting to events of interest. These applications vary from simple detection of changes on

user interface elements to financial fraud detection, IoT data insights, sensor network

monitoring systems. The ever increasing demand for this type of application can be easily

identified as the society and machines are more connected to multiple sources of information,

which in turn should be properly handled by a software system in order to react to them in a

timely manner.

Several approaches have been proposed and deployed by different communities to

address the development of such applications. Particularly, two of them have been researched

[1] and compared to the extent of their differences, similarities and even integration, they are:

Reactive Languages (RL) and Complex Event Processing (CEP), an event-based

programming approach.

Due to similarities between CEP and Reactive Languages, thoroughly researched by [1]

and further elaborated by [2][4], it has been possible to implement CEP concepts by using

reactive programming.

For this reason, this work aims to develop a new CEP framework using reactive

programming, provided by Reactive Extensions, and Kotlin as the functional language, which

inspired the name of framework: CEPlin.

This document is organized as follows: Chapter 2 briefly introduces CEP and RLs

concepts as well as related works that motivate the development of this framework. Chapter

3 discusses the framework proposal. Chapter 4 details the implementation. Chapter 5

demonstrates the work by implementing use cases. Finally, Chapter 6 discusses conclusions

and future work.

11

2. Background

This chapter introduces the important concepts and tools related to this work. First,

CEP and RLs are introduced, then their comparison and integration are discussed. After that,

CEP operators are presented. Finally, the Kotlin language used in this work is briefly

introduced.

2.1. Complex Event Processing

 The role of Complex Event Processing can be summarized as the interest of combining

multiple streams of information to detect complex pattern situations and notify them as they

happen. For example (Figure 1), in healthcare a doctor may want to check the patient heart

rate, temperature and blood pressure to monitor if any reaction starts after taking a certain

medication. In this case, we have three streams of information to be considered: heart rate,

temperature and blood pressure. A bad reaction R could be identified and notified to the

doctor as soon as both blood pressure and heart rate starts increasing within a time frame of

30 seconds while the temperature stays stable within a given range. The notification can

provide sufficient feedback to the doctor to react accordingly given that they now know a

reaction R is starting to develop on the patient.

Figure 1 - CEP Application Flow on the Healthcare Example

 The CEP concept itself belongs to a wider domain class of systems called as

Information Flow Processing (IFP) systems. The IFP domain includes all solutions that are

designed to process flows of information on-the-fly, to timely compute and update results [1].

12

Data Stream Management Systems (DSMS), for instance, also belong to this domain and the

increasing demand for timely high data processing throughput led the database community to

develop it as a response to the traditional Database Management System (DBMS) whose data

availability is slow in a reactive scenario due its dense persistence requirements.

Although DSMSs solve the data streaming issue, it cannot extract high-level

situations, this task is generally left to their clients. This is the requirement that Complex

Event Processing covers, CEP engines not only allow the filtering, combination and

aggregation over data streams, but also the detection and notification of high-level event

occurrences.

2.2. Reactive Language

A Reactive Language abstracts the handle of streams so that a programmer can focus

on managing them by defining the business logic directly instead of coding the stream

handling itself. Still on the healthcare case, a RL fits as the tool to detect and propagate

changes of each interested data source over time, e.g. every time the patient temperature

changes the reactive application is notified so it can react to that information.

Although RLs were first introduced as dedicated functional languages, known as

Functional Reactive Programming (FRP) [9], other approaches have been developed as

libraries, design pattern extensions and other abstractions. ReactiveX (Rx) [7], for instance,

provides reactive capabilities for multiple languages and platforms and it has been widely

used in industry. Essentially, ReactiveX extends the Observer pattern to deal with

asynchronous data streams and it also takes advantage of functional programming to provide

seamlessly composition of operators over streams.

Figure 2 – ReactiveX Operations over Stream

Figure 2 shows how you can observe only the relevant values by applying an operator

function called filter, which evaluates if the input stream emits a value over 100 beats per

second, then transforming the filtered stream into a HeartRateEvent instance in the system by

using the map operator and finally subscribing to the resulting stream that notifies when the

desired event is emitted.

13

It is important to notice that reactive programming, its languages and tools generally

aim to achieve the same concept of dealing with changes of values over time, thus we

naturally see common subjects being often mentioned among the IFP domain.

2.3. CEP and Reactive Language integration

Margara and Salvaneschi were able to identify relevant similarities between RL and

CEP which then triggered the development of frameworks to implement CEP operators using

reactive programming [1]. In order to compare the two domains, they presented five main

phases that represent the behavior of a reactive application as shown below:

● Observation: this phase stands for the observation of changes of an interested

source;

● Notification: after a change happens, the notification is triggered and sent to

the system;

● Processing: the system process the notification through a set of rules or

expressions;

● Propagation: the results of the processing phase is propagated to all interested

components;

● Reaction: finally, all the interested components receive the results and can

react accordingly.

Figure 3 - A Comparison of how CEP and RLs Implement the Five Phases of a Reactive Behavior [1]

As shown in the comparison between CEP and RLs in Figure 3, the CEP observes the

occurrences of events rather than the value changes of a source as RLs do. The notification

of a CEP system is explicit, i.e., the user must push an event to the CEP engine, whereas in

the RL the notification is implicitly triggered when there is a change in value of an interested

source. The CEP processing phase is performed by a set of rules while in RLs the user defines

how the output will be defined based on the input values. The propagation phase of CEP and

RLs only defer on how they are delivered. Finally, the CEP reaction phase generally acts as

14

a message informing that the interested event happened, whereas the RL reaction phase

returns the value that changed.

To summarize, the similarities revealed in [1] show they can be complementary

solutions to support reactive applications. For example, on the observation phase, a RL can

collect the value changes of a source A, transform A into an event, then filter the event stream

based on some predicate function over A, then apply a CEP operator extended from the RL

function manipulations and finally the RL can be responsible for propagating the changes

accordingly to the passed reaction function. In fact, the REScala and CEPSwift projects were

able to implement the described scenario by integrating CEP and RLs features.

2.4. CEP Operators

 Complex event processing operators provide ways of defining rules and also allow

selecting, transforming and managing flows of information of a CEP engine. Cugola and

Margara listed all the available operators collected during their analysis (see Table 1). Some

of these operators are limited to a particular CEP framework model, while others are common

to a set of them. Moreover, there is usually the possibility of combining multiple operators in

order to achieve the desired behavior or rule.

Table 1 - Available Operators. Summarized from Cugola and Margara, 2012 [3]

Operator type Operator class Description

Single-Item

Operators

Selection

operator

A selection operator can filter items that satisfies a

given constraint

Elaboration

operator

An elaboration operator can transform items by

selecting or changing their information

Logical

Operators

Conjunction
A conjunction of items I1, I2…In is satisfied when all

the items I1, I2…In have been detected

Disjunction
A disjunction of items I1, I2…In is satisfied when at

least one of the items I1, I2…In have been detected

Repetition

A repetition of an information item I of degree <m, n>

is satisfied when I is detected at least m times and not

more than n times

15

Negation
A negation of an item I is satisfied when I is not

detected.

Sequences
Sequence

operator

A sequence defines an ordered set of information items

I1, I2…In, which is satisfied when all the elements I1,

I2…In have been detected in the specified order

Windows

Fixed windows
A fixed window does not move and process items

within a given time frame

Landmark

windows

A landmark window has a fixed lower bound, while

the upper bound advances every time a new item

arrives

Sliding

windows

A sliding window has only a fixed size, i.e., both upper

and lower bounds advance when new items arrive

Pane and tube

windows

A pane and tumble window is a variant of sliding

windows, in which both the lower and the upper

bounds move by k elements, as k elements enter the

system. The difference between pane and tumble

windows is that the former have a size greater than k,

while the latter have a size smaller than (or equal to) k

Flow

Management

Operators

Join operator
Join operators are used to merge two flows of

information

Union

Union merges two or more input flows of the same

type, creating a new flow that includes all the items

coming from them

Except

Except takes two input flows of the same type and

outputs all those items that belong to the first one but

not to the second one. It is a blocking operator

Intersect

Intersect takes two or more input flows and outputs

only the items included in all of them. It is a blocking

operator.

Remove-

duplicate

Remove-duplicate removes all duplicates from an

input flow

Duplicate

Duplicate operators allow a single flow to be

duplicated in order to use it as an input for different

processing chains

16

Group by

Group by operators are used to split information flows

into partitions in order to apply the same operator

(usually an aggregate) to the different partitions

Order by
Order-by operators are used to impose an ordering to

the items of an input flow

Flow creation
Flow creation operators generally provide a way of

creating a new information flow from a set of items

Aggregates

Detection

aggregates

Detection aggregates are those used during the

evaluation of the condition part of a rule

Production

aggregates

Production aggregates are those used to compute the

values of information items in the output flow

2.5. Kotlin

 Kotlin is a modern open source programming language that offers interoperability

with the well-known Java and its JVM technologies. It also has support for Javascript,

Android and Native platforms. The Kotlin project was started by JetBrains in 2010, but the

first official stable release was only published in February 2016 [8]. Since then, Kotlin has

been gaining rapid adoption and the remarkable point of it can be considered when Android

developers decided to support it as the first-class language of their platform in 2017 [10] since

many developers were already using and recommending it to new projects.

Besides the multiplatform support, Kotlin especially offers an appealing bundle for

modern JVM programmers because it has both functional and object-oriented enhanced

features, which makes the learning curve smoother for Java users. Furthermore, Kotlin has

other features such as Lambda Functions as first-class citizens, Null Safety, Extension

Methods and Data Classes that helps producing less boilerplate, more expressive and concise

code in comparison to Java.

In the context of reactive applications, functional capabilities can be helpful in a

reactive development environment because usually a stream is composed by the input of

another stream besides the original source, thus we often see chains of operations over inputs

and outputs of streams to achieve the desired result.

17

3. Implementation

 This chapter briefly presents the proposal, tools, libraries and the language used in the

project implementation, then it introduces the main CEPlin classes and their features. The

code is available on GitHub1 and it is open source under MIT license. Both CEPlin and

CEPSwift are under the RxCEP Organization Profile.

3.1. Proposal

This work introduces a new framework called CEPlin. The main goal of this work

follows its precursor, called CEPSwift [2], which is making event and stream handling easier

and also providing CEP features, with the exception of the CEPlin framework proposal is for

Kotlin users. Additionally, CEPlin brings few implementation enhancements in comparison

to CEPSwift, mostly due to Kotlin features while others due to simple code refactorings.

CEPlin also offers a slightly different set of implemented operators listed on Table 2.

At the time of this work, there is no solution that contemplates CEP features for Kotlin.

Furthermore, Kotlin has been gaining traction around Java, one of the most popular

programming languages, and also Android developers due its full interoperability with them

and seamlessly functional paradigm and extensibility integration, which makes the

combination very suitable and powerful for programmers.

The framework architecture follows the same architecture proposed by Guedes

(Figure 4), each entity will be further detailed in the next section.

Figure 4 - Framework high-level architecture (Adapted from Guedes, 2017, p. 25) [2]

1Avaiable at <https://github.com/RxCEP/CEPlin>

https://github.com/RxCEP/CEPlin

18

3.2. Core entities

CEPlin has four main entities: Event, EventManager, EventStream and Complex

Event. These entities are the core of the framework, thus it is important to know the role that

each of them represents. They are summarized from Guedes [2] as follows:

● Event: the Event entity is an interface that every class that models a well-

formatted event should conform to. Every Event subclass must have a

timestamp attribute in order to keep the temporal aspect, e.g. a GPS signal can

be mapped into a GPSEvent that has a latitude, longitude and a timestamp;

● EventManager: the EventManager<E> is a generic class that manages the

occurrences of events, where E must be an Event class. This way, every time

an Event E occurs, it should be added to the EventManager<E> by using the

addEvent function (Figure 5). An user interested in those events must get an

EventStream instance from the EventManager by calling the asStream

function and subscribing to it;

● EventStream: the EvenStream is a class that represents the stream of all

occurrences of an event. This class has all the CEP operators functions and

each function may either return a new EventStream or a ComplexEvent (Figure

3). This is where the functional paradigm can be really helpful when managing

the event stream because the user can easily compose a rule by filtering,

merging and mapping each resulting EventStream and then finally subscribe

by passing a function that will react to that information.

● ComplexEvent: the ComplexEvent class is required when the user is

interested in merging different EventStreams that have different event types.

A ComplexEvent instance is created in order to detect when the merged

EventStreams emitted events happen within a time frame, the user must also

pass a function that will react to that information

19

Figure 5 - CEPlin UML class diagram

3.3. Libraries and tools

 CEPlin is entirely written in Kotlin. However, in order to add reactive capabilities to

this work it was necessary to use RxJava and RxKotlin [5][6] libraries from the ReactiveX

(Rx) project. ReactiveX is a library that extends the Observer pattern to support asynchronous

data streams [7]. RxJava is the core reactive library for JVM and provides all the Rx features

required for it, while the RxKotlin adds Kotlin-only features, such as extension functions in

addition to RxJava. At the time of this work, the CEPlin library is available as a module inside

of an Android project where the case studies are implemented using the framework.

3.4. Implemented operators

 The implemented operators are a subset of possible operators defined by Cugola (see

section 2.4). They were chosen by relevance, complexity and available development time.

Some operators are a straightforward wrapped implementation from the ReactiveX library,

20

illustrated by the Wrap column, while others range from minor to complex compositions as

described by the Implementation column (Impl., for short) in the Table 2 below:

Table 2 - Implemented Operators

Operator

type
Operator Description Wrap Impl.

Single-Item

Operators

Filter

The filter operator emits only events from an

EventStream that satisfies a predicate

function.

●

Map

This operator transforms an EventStream by

creating a new EventStream through a

projection function.

●

Sequences Sequence

The sequence operator emits only events that

follows a specified order within a set of

events. The operator takes a predicate function

as the sequence condition and the length of the

sequence to be considered.

 ●

Windows Window
This operator only emits events that happened

within a given time frame.
●

Flow

Management

Operators

Merge

This operator merges two EventStreams and

notifies the subscriber through a

ComplexEvent object when both

EventStreams happen within a given time

frame.

 ●

Union

This operator merge two EventStreams into

one EventStream that emits events from both

streams as they arrive.

●

Aggregates

Min and

Max

In order to use the aggregates functions the

event must implement the Comparable

interface. The operators emit the maximum

and minimum, respectively.

 ●

SumBy

This operator sums the values emitted by an

EventStream. The sum operator takes a

selector function that should return the data to

be added.

 ●

21

4. Use cases

This section shows simple cases using CEPlin framework. The first case aims to detect

an horizontal gesture sequence on the phone screen and the other will detect the action of

putting the phone in the pocket. For each case a table with metrics highlights the differences

of implementing by just using ReactiveX versus CEPlin library.

4.1. Gesture sequence detection

 The goal for this use case is to be able to set rules for a specific sequence of gestures

in order to react to them as soon as they happen. The gestures are captured from the screen

touch event function called onTouchEvent, which returns a MotionEvent with the x and y axis

values.

 The case is very simple: the application wants to know if the user is moving their

finger along the x axis with a certain tolerance of a vertical displacement. Each captured

movement is modeled to a class called TouchEvent.

Figure 6 - TouchEvent class that models the user screen touches

 Now, the application must create an EventManager instance in order to add

TouchEvents to the stream as the touch movement changes:

Figure 7 - EventManager instance for TouchEvent

 Finally, the application can define the rule that will detect this particular gesture

movement. For this case we’ll consider it valid by checking if the movements within a

window of K events follows a sequence where each consecutive x-axis distance difference

22

must be greater than a threshold X, while the y-axis movements must be lower than a threshold

Y. The thresholds X and Y here are just distance in pixels, for simplicity.

Figure 8 - Horizontal gesture rule using the CEPlin sequence operator

 For a matter of comparison the following the Figure 9 shows how to achieve the same

behaviour by only using the Rx library. Then the Table 3 presents the metric reports for each

way of defining the same rule. As we can see the CEPlin reduces the lines of code (LOC) for

the sequence rule by a factor of almost 3 in comparison to the Rx only code. Furthermore, it

also reduced the numbers of operator calls which produces a more readable code, this is

naturally due to the abstraction that the CEPlin proposes.

Figure 9 - Horizontal gesture rule using ReactiveX operators

23

Table 3 - Metrics for the horizontal gesture case

Library LOC Op. Calls

RxJava/Kotlin 18 2

CEPlin 7 1

4.2. Phone in pocket action detection

In this case we want to detect if the user just put the phone in the pocket. The goal

here is to cover one of the possible ways of detecting the action of putting the phone in the

pocket. The covered scenario is when the user is holding the phone and then they point it

downwards in the direction of their pant pocket. Evidently, we cannot rely only on the

orientation of the phone, otherwise one could just turn the phone downwards, thus we must

track other sensors in order to detect the described behaviour. The solution was to track the

values of the downwards acceleration and proximity sensors.

First, we must define the event classes that represents each sensor data (Figure 10 and

Figure 11).

Figure 10 - ProximityEvent class that models the phone proximity to an object

Figure 11 - AccelerationEvent class that models the phone proximity to an object

 Then two EventManager instances must be created for each interested type of event.

All sensor data are retrieved from the native Android Sensor Library that calls the

onSensorChanged function with the state of the sensor over time (Figure 12).

24

Figure 12 - EventManager instances for ProximityEvent and AccelerationEvent

 Finally, the application declares the two rules to be considered that will validate the

in pocket action (Figure 13). First, the acceleration rule is responsible for detecting when the

user is moving the phone downwards by using the sequence operator of length 2 and passing

the predicate function that checks if the y-axis acceleration is going downwards. Then the

proximity rule checks if the distance to an object is decreasing by also using the sequence

operator and passing a function that evaluates two consecutives values. At last, we merge the

two rules by applying the merge function, i.e., whenever the acceleration rule and the

proximity rule are triggered within a time frame the complex event will notify its subscribers.

Figure 13 - Phone in pocket action rule using CEPlin operators

Figure 14 shows how to accomplish the same application by only using RxJava/Kotlin

and the Table 4 highlights the LOC difference between the two solutions. The results are very

similar to the previous case, besides the RxJava/Kotlin LOC is now 10 times greater than the

CEPlin code due to the more complex scenario.

25

Figure 14 - Phone in pocket action rule using ReactiveX operators

Table 4 - Metrics for the phone in pocket action case

Library LOC Op. Calls

RxJava/Kotlin 33 4

CEPlin 3 3

4.3. Discussion

 This chapter introduced two use cases using the CEPlin library. Both used a small set

of operators proposed in this work that aims to improve the process of defining complex rules.

As this is the first version of the library, the range of use case possibilities might be limited

26

by the operators implemented, thus the examples were focused on the usage of operators not

directly available by the Rx libraries.

 Furthermore, as previously shown in Table 3 and 4, CEPlin not only significantly

reduced the LOC amount to build the same solution by using pure Rx, but the API abstraction

also improved the readability and the ability to define the rules more intuitively, this can be

verified by the amount of operators called (Tables 3 and 4, Op. calls column) needed to

achieve the same results. Therefore the end user can focus on implementing the business logic

and the complex rules to detect the desired events rather than wasting time setting up their

own solution.

27

5. Conclusion

In this work, a new CEP engine written in Kotlin called CEPlin was presented, the

library extends reactive programming operators to help building CEP applications thanks to

researches that triggered the integration between RLs and CEP. First, the CEP and RLs

concepts were introduced as well as their integration scenario highlighting their similarities.

After the implementation details, two use cases showed that CEPlin can improve the

development of a CEP application by using reactive programming.

It is important to notice that this work was inspired by the CEPSwift library and one

of the goals was also to make a version for Kotlin. Swift and Kotlin are adopted by different

platforms and communities so it makes sense to cover the availability for Kotlin and

potentially JVM users. Although they are similar approaches, they naturally have their own

syntax and performances particularities, not to mention that their library and community

ecosystem vary accordingly.

This work is the first step to support CEP using reactive programming in Kotlin, there

are many other CEP operators to be developed in the future to increase the coverage of CEP

requirements. There is also the need for performance and usability tests to improve the

framework to match the real-time and the ease of use requirements, respectively. Needless to

say, in the early stages of the library it is also necessary to use other design metrics to identify

possible flaws to avoid technical debts and improve the long term maintainability of the code.

28

6. References

[1] MARGARA, Alessandro; SALVANESCHI, Guido. Ways to react: Comparing reactive

languages and complex event processing. REM, 2013.

[2] GUEDES, George. CEPSwift: Complex Event Processing Framework for Swift

(Undergraduate Thesis, Center of Informatics, UFPE). 2017

[3] CUGOLA, Gianpaolo; MARGARA, Alessandro. Processing flows of information: From

data stream to complex event processing. ACM Computing Surveys (CSUR), Volume 44,

Issue 3, June 2012, Pages 1-62

[4] SALVANESCHI, Guido; HINTZ, Gerold; MEZINI, Mira. REScala: Bridging Between

Object-oriented and Functional Style in Reactive Applications. MODULARITY 2014-

Proceedings of the 13th International Conference on Modularity (Formerly AOSD), Pages

25-36.

[5] RxJava: Reactive Extensions for the JVM. Retrieved from

https://github.com/ReactiveX/RxJava.

[6] RxKotlin, Kotlin Extensions for RxJava. Retrieved from

https://github.com/ReactiveX/RxKotlin

[7] ReactiveX - An API for asynchronous programming with observable streams. Retrieved

from http://reactivex.io/

[8] Reference Documentation - Kotlin Programming Language. Retrieved from

http://kotlinlang.org/docs/reference/

[9] P. Hudak. Functional reactive programming. In Programming Languages and Systems,

pages 1–1. Springer, 1999.

[10] Android Developers Blog: Android Announces Support for Kotlin. Retrieved from

https://android-developers.googleblog.com/2017/05/android-announces-support-for-

kotlin.html

https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxKotlin
http://reactivex.io/
http://kotlinlang.org/docs/reference/
https://android-developers.googleblog.com/2017/05/android-announces-support-for-kotlin.html
https://android-developers.googleblog.com/2017/05/android-announces-support-for-kotlin.html

	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Acronyms
	Contents
	1. Introduction
	2. Background
	2.1. Complex Event Processing
	2.2. Reactive Language
	2.3. CEP and Reactive Language integration
	2.4. CEP Operators
	2.5. Kotlin

	3. Implementation
	3.1. Proposal
	3.2. Core entities
	3.3. Libraries and tools
	3.4. Implemented operators

	4. Use cases
	4.1. Gesture sequence detection
	4.2. Phone in pocket action detection
	4.3. Discussion

	5. Conclusion
	6. References

