ne-
ne~-
e~

|

‘g

VIRTUS IMPAVIDA
v Yy

Universidade Federal de Pernambuco
Centro de Informatica

Graduacdo em Engenharia da Computagao

Data Augmentation for Offline
Handwritten Signature Verification

Adonias Vicente da Silva Barros

Trabalho de Graduagdo

Recife
Dezembro de 2018

Universidade Federal de Pernambuco
Centro de Informatica

Adonias Vicente da Silva Barros

Data Augmentation for Offline Handwritten Signature
Verification

Trabalho apresentado ao Programa de Graduacdo em En-
genharia da Computagdo do Centro de Informdtica da Uni-
versidade Federal de Pernambuco como requisito parcial
para obtengcdo do grau de Bacharel em Engenharia da

Computagdo.

Orientador: Cleber Zanchettin

Recife
Dezembro de 2018

To my mother and sister for always support my dreams and
believe in me.

Acknowledgements

Agradeco ao meu orientador, o professor Dr. Cleber Zanchettin pelo apoio durante a minha
pesquisa e por acreditar no meu potencial. Agradecgo aos professores Adriano e Edna pela opor-
tunidade que me deram de conhecer uma outra realidade e mudar a minha visdo de mundo.
Agradeco a minha mde Audenice e a minha irma Estefany por estarem sempre comigo du-
rante essa jornada. Agradeco familia e amigos pelo apoio e por acreditarem no meu sucesso.
Agradeco a Li-Ting por sempre acreditar em mim. Agradeco ao Centro de Informética da
UFPE, professores e funciondrios que me moldaram como pessoa e profissional e a todos da
Document Solutions.

Consagre ao Senhor tudo o que vocé faz, e os seus planos serdo
bem-sucedidos.

—BIBLIA SAGRADA (Provérbios 16:3)

Resumo

A tecnologia biométrica € usada em uma ampla variedade de aplicacdes de seguranca e princi-
palmente para verificar a identidade de uma pessoa. No entanto, para esses sistemas a quanti-
dade de informagdes sobre cada individuo € limitada a um pequeno conjunto de amostras, o que
torna a verificagdo biométrica uma tarefa desafiadora. O objetivo deste estudo € analisar a apli-
cacdo de uma técnica de aumento de dados usando uma rede generativa adversarial profunda.
O modelo proposto foi empiricamente testado no banco de dados de assinaturas GPDS300.
Baseado nos resultados, o modelo € capaz de gerar assinaturas que podem ser utilizadas para
aumentar os dados de treinamento disponiveis em um sistema de verificagao de assinaturas.

Palavras-chave: aumento de dados, sistema offline de verificacdo de assinaturas, deep convo-
lutional generative adversarial network, aprendizagem profunda, classificador dependente de
escritor

Abstract

Biometrics technology is used in a wide variety of security systems and especially to verify
the identity of a person. However, for these systems the amount of information about each
person is limited to a small set of samples, which makes biometric verification a challenging
task. This study analyzes the application of a data augmentation technique using a deep con-
volutional generative adversarial network. The model was empirically tested in the GPDS300
signet dataset. Based on the results, this model is capable of generating signatures that can be
used to increase the data available in a signature verification system.

Keywords: data augmentation, offline signature verification system; deep convolutional gen-
erative adversarial network; deep learning, writer-dependent classifier

Contents

(I__Introduction|
2 Background and Related Works|
[2.1 Handwritten signature verification systems|

0N B~ W W

(2.3 Data augmentation|

2.4 Other related worksl

Materials an ied Meth
[3.1 Signature Corpus|

3.2 Tested models|

[3.3 Preprocessing|

3.4 Model architectures
[3.5 Image analysis|

4 Experiments and Discussion|
4.1 Development Environment|
4.2 Preprocessing experiments|
4.3 'Training the neural networks|

1.4 DCGAN

.5 CDCGAN

4.6 InfoDCGAN

.7 Image Analysis|

N

Ii

5 Conclusions|
5.1 Limitations|
5.2 Future work]

" PP [

10

10
11
12
13

15
15
15
17
18
22
26
28

31
31
31

32

List of Figures

2.1 ~ Samples from the GPDS-960 dataset. Each row contains three genuine signa- |
tures from the same user and a skilled forgery.| 4
2.2 GAN architecture 5
2.3 DCGAN generator used for LSUN scene modeling] 7
[3.1 Dataset signatures. Each row contains signatures from one class in the dataset. |
The first two columns are genuine signatures, and the last two columns are |
forgeries| 10
[3.2 Preprocessing technique 1| 12
[3.3 Preprocessing technique 2| 12
4.1 Preprocessed images with 64x64 pixels| 16
4.2 Preprocessed 1mages with 160x256 pixels (first two columns) and 128x128 |
pixels (last two columns). In the first row, original and centered. In the second |
row, resized and croped| 16
4.3 Images with 64x64 pixels, 128x128 pixels, 160x256 pixels, and 256x256 pixels| 17
4.4 CDCGAN and infoDCGAN training schemas| 18
4.5 Generated sample after 60 epochs and real sample] 19
4.6 Generator training loss 1n green and discriminator training loss 1n blue. In the |
second plot D(x) 1n blue and D(G(z)) 1n green| 20
.7 Original 1mage and 64x64 pixels Preprocessed image] 20
(4.8 Generator training loss in green and discriminator training loss in blue. In the |
second plot D(x) 1n blue and D(G(z)) 1n green| 21
4.9 DCGAN 64x64 results per epochl 21
.10 DCGAN 64X64 1mages for one signature. In the first row real images, 1n the |
second row generated 1mages| 21
.11 Modified DCGAN generated samples to 128x128 and 160x256 sizes in differ- |
ent epochs| 22
{4.12 Original image and 256x256 pixels Preprocessed image 23
.13 CDCGAN loss per iteration with 256 X256 pixels images| 24
.14 256X256 pixels generated images. From the left to the right, original, 256x256 |
pixels resized, and three generated samples| 25
[4.15 Original CDCGAN, InfoDCGAN, and adjusted InfoDCGAN| 26
{4.16 Generated 1mages from different epochs from one class using five signatures as |
nput| 27

LIST OF FIGURES

10

{4.17 First row, examples generated with 20 genuine 1mages as input in epochs 90,

120, 220, 250, and 400. Second row, examples generated with 20 genuine

1mages and 235 forgeries 1n epochs 80, 90, 120, 150, and 400 27
.18 HSV image colormap| 28
4.19 Pixel-by-pixel difference between two 1mages for three classes in epochs 180 |
and 200 with HSV 1mage colormap| 28

List of Tables

4.1 Preprocessing final parameters in pixels| 17
4.2 DCGAN training statistics| 19
4.3 PSNR and SSIM benchmark comparing real images with other real images and |
| forgeries from the same classes| 29
4.4 PSNR and SSIM comparing generated 1images with real ones and forgeries |
L from the same classes| 30
A.1 _DCGAN 64x64 Generator architecturel 32
A2 DCGAN 64x64 Discriminator architecturel 33
A3 CDCGAN 256x256 Generator architecture 33
A4 CDCGAN 256x256 Discriminator architecturel 34
[A.5 DCGAN 64x64 training process| 35
[A.6 CDCGAN 256x256 training process| 36

11

CHAPTER 1

Introduction

Handwritten signature verification is a widely employed technique to identify people’s identity
in financial and administrative areas due to the non-invasive process of signature collection and
the familiarity of users with this method [[1]. During the past few decades, forensic document
examiners have handled verification tasks and have been responsible for deciding if a signature
is genuine or a forgery. However, with the advance of many machine learning models, mostly
neural networks, this manual method has been replaced by automatic verification systems. In
such systems, usually, a model is trained over a learning set of user signatures and then used
for verification.

Actually, with the advances of deep learning methods, many neural network models have
been employed as signature verification systems[2][3]. In such systems, the neural network
receives a set of data and trains over them to classify or verify new unseen samples. Nowadays
most research studies focus on learning feature representation demonstrating better results in
multiple benchmarks such as CEDAR[4], MCYT-75[3], and GPDS Synthetic Signature[6]].

One of the biggest challenges in the signature verification field is the limited number of
samples per user. Usually, there are not sufficient data samples available for training the model,
consequently restricting the performance of real applications. For instance, financial and ad-
ministrative contracts often demand few signatures for the same user. As a result, the error rate
of the verification task in automatic models is higher.

To address this issue, several researchers have proposed techniques to generate new images
by applying transformations to images. This set of techniques are so-called Data augmentation
techniques [7] [8]]. Traditional data augmentation methods perform simple transformations of
the original image, such as scaling, translation, rotation, flipping, lightning condition. In the
handwritten signature field, Huang and Yan [9] researched some ways to “disturb” a genuine
signature and generate new samples using “‘slight distortions” and “heavy distortions” like ro-
tation, scaling, slant, etc. Other authors [[10][11] have proposed a signature synthesis approach
inspired by a neuromotor model to duplicate signatures. However such approaches fail to cre-
ate a considerable number of high-skilled signatures and to bring any new visual features to
improve the network learning ability.

In this work, we analyze the application of a data augmentation technique using a Condi-
tional Deep Convolutional Generative Adversarial Network (CDCGAN)[12]](13] and an Info
Deep Convolutional Generative Adversarial Network (InfoDCGAN)[14][13] over a signature
dataset. This model can generate new images from the genuine ones copying their distribu-
tion. Our goal is to increase the dataset size by creating high-quality skilled signatures, which
can further be used to pre-train a given signature verification system to improve training pro-
cess performance. Such networks have already been proved to be excellent methods for data

CHAPTER 1 INTRODUCTION 2

augmentation [13]].

This undergraduate work is organized into five chapters. Initially, we introduce essential
concepts to understand signature verification systems, generative adversarial networks , and
data augmentation in Chapter 2] After that, we present the steps of how we built the generative
adversarial network, such as preprocessing, model architecture, neural network training, and
image analysis in Chapter [3] Following, we show the experiments over a signature dataset
and then analyze the generated samples in Chapter 4 Finally, we present our conclusions and
describe some future works in Chapter 5]

CHAPTER 2

Background and Related Works

This chapter presents some of the main concepts of handwritten signature verification systems,
generative adversarial networks and convolutional neural networks and the data augmentation
process, finally including related research from other authors.

2.1 Handwritten signature verification systems

Biometric systems are responsible for recognizing someone based on measurements of bio-
logical traits, for instance, fingerprint, face, and iris. When such systems are employed in
handwritten signatures, they are widely known as Handwritten signature verification systems.

These systems are mainly used in two cases: verification and identification. A verification
system aims to automatically discriminate if a given sample signature is indeed from one per-
son, while identification systems are responsible for identifying who is the owner of the given
sample signature [[1].

Another important concept about signature verification systems refers to the acquisition
method: online or offline. In online (dynamic) verification systems, signatures are captured in
real time by some device, such as a digitizing tablet, which provides some dynamic information
of the user’s signing process, for instance, hand pressure, azimuth/altitude angle, stroke order,
pen inclination, etc. By contrast, in the offline (static) verification systems, signatures are
captured after the writing process in a digital form, and only uses 2D visual (pixel) images
usually acquired by the scanning process.

Acquired signatures are classified into four classes: genuine, random forgeries, simple forg-
eries, and skilled forgeries. Genuine are real examples provided by some writer. Random
forgeries are falsifications where the writer does not have any information about the genuine
signature. Simple forgeries are falsifications where the writer knows only the person’s name,
but not his signature. Finally, skilled forgeries are falsifications where the writer knows the
user’s name and signature and usually copy it. Moreover, signatures from the same user typi-
cally display a high intra-class variability due to the user’s signature variance over time and a
low inter-class variability when we consider skilled forgeries (Figure [2.1)).

Signature verification is essential in preventing the falsification of documents. According
to Hafemann et al.[1] this problem is modeled as a verification task. Generally, the model is
trained over a learning sample set containing genuine signatures from some writers. Afterward,
this model is employed for verification: a user claims some identity and provides a query sig-
nature. The model then classifies the signature as genuine or forgery. Finally, the performance
of the model is evaluated according to a test set.

2.2 GENERATIVE ADVERSARIAL NETWORKS 4

Figure 2.1 Samples from the GPDS-960 dataset. Each row contains three genuine signatures from the
same user and a skilled forgery.[[13]]

Such classification models are divided into two categories: Writer-Independent (WI) and
Writer-Dependent (WD). WI systems are used to identify who is the owner of the signature.
On the other hand, Writer-Dependent (WI) systems are employed to determine if a signature
belongs to a specific user.

Actually, in the offline signature verification field, researchers have employed many tech-
niques to identify a signature. They have put most of the effort into extracting handcrafted
features to represent signatures, such as geometric features [15], directional features [16], and
texture features [17]. Nevertheless, in recent years, with the development of deep learning
models, handcrafted features have been replaced by hand-engineered feature extractors using
raw data (pixels).

Haffemann et al.[18] proposed a Writer-Independent feature learning method, where a Con-
volutional Neural Network (CNN) is used to learn feature representations. After that, a writer-
dependent classifier uses this representation in the training process. Zhang et al.[2] proposed
using Generative Adversarial Networks (GAN) [19] for learning the features from a subset of
users. In this case, they trained two networks: one to generate signatures and another one to
discriminate if an image is from a real or an automatically generated signature [1], using the
discriminator layers to extract features for future transfer learning.

2.2 Generative adversarial networks

Generative Adversarial Network or GAN is a framework proposed by Goodfellow et al. [19] for
estimating generative models via an adversarial process, training two models simultaneously.
This framework also can be interpreted as a minimax two-player game.

Two neural networks compose the GAN, a generator network G and a discriminator network
D. The generator aims to generate new samples, and the discriminator seeks to discriminate
between generated samples and real samples.

Explaining the generative process, a generative model G receives a sample noise z (normal
or uniform distribution) input representing the latent features of the generated image. In prac-
tice, the generative model is a convolutional neural network, basically performing transposed

2.2 GENERATIVE ADVERSARIAL NETWORKS 5

convolutions to upsample the input z. As a result, the model G generates new images from this
input. On the other hand, the discriminator model D receives real images and generated images
as inputs and discriminates them estimating the probability that a sample comes from a real or
generated sample. As a result, the discriminator learns features which contribute to recognizing

real images (Figure [2.2]).

Real
Samples

=

et D 7 IsD
e i Correct? .
/ ™\ $ Discriminato “ -
A ,/ s B .
G *
Generated ;
| Generator Fake

= < Samples

Latent
Space

CETH E]

! Fine Tune Training i

Figure 2.2 GAN architecture [20]

Mathematically, to learn the generator’s distribution over data x, the author defined a prior
on input noise variables pz(z), and then represent a mapping to data space as G(z; g), where
G 1s a differentiable function represented by a multilayer perceptron with parameters g. The
author also defines a second multilayer perceptron D(x; d) that outputs a single scalar. D(x)
represents the probability that x came from the data rather than pg. He trains D to maximize the
probability of assigning the correct label to both training examples and samples from G. After
that, simultaneously he trains G to minimize log(1 D(G(z))). In other words, D and G play the
following two-player minimax game with value function V (G, D).

m(l;nmgx V(DvG) = EXdiam(x)) [logD(x)] + EZNPz(Z)) [lOg(l _D(G(Z))>)] (2.1)

In other words, in the training process, the objective of G is to generate images with the
highest value of D(x), the G generated samples are placed as inputs to D, which is trained as a
deep network classifier and discriminates if the image is generated or real. D aims to maximize
the probability of recognizing real images as real and generated images as fake. So, the target
value of D is back propagated all the way back to G, training G to create images closer to the
real image distribution according to the Algorithm 1.

2.2 GENERATIVE ADVERSARIAL NETWORKS 6

Algorithm 1: Minibatch stochastic gradient descent training of generative adversarial
nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used
k = 1, the least expensive option, in our experiments. [[19]
for number of training iterations do
for k steps do
« Sample minibatch of m noise samples z(!), ..., z(") from noise prior Pe(2)
» Sample minibatch of m examples xM . x(" from data generating distribution

Pdata (X)
 Update the discriminator by ascending its stochastic gradient:

Vod iy LIy [log D(x\V) +log (1 =D(G(z")))]
end for
» Sample minibatch of m noise samples zW, ..., 2" from noise prior p,(2)
» Update the generator by descending it stochastic gradient:

Vog wLity [log (1-D(G(")))]
end for
The gradient-based updates can use any standard gradient-based learning rule. We used
momentum in our experiments

In GAN, the latent space z feds the generator network which does not have any additional
information about the images to be generated. An extension of the GAN is the conditional
generative adversarial network or CGAN [12]. In this model, both generator and discriminator
receive some extra information y such as class labels or data from other modalities. In the
generator, y acts as an extension of the latent space z, which improves the generator starting
process. And in the discriminator, it helps to discriminate the images. With the introduction
of this mechanism, the generated images are expected to follow the characteristics of the given
additional information y. Finally, the objective function becomes

minmax V(D,G) = By, [0gD()] + Eerp) llog(1 - DGE))] 2.2)

where D(xly) and G(zly) represent the inputs of the two models x and z given an input y.

However, GANs have an unstable training process, resulting in non-expected generated
samples. For this reason, Redford et al. [13]] proposed a set of constraints to improve the ex-
traction of image representations, purely unsupervised, so-called Deep Convolutional Genera-
tive Adversarial Networks (DCGAN) Figure[2.3] This network architecture is an improvement
of GANs [[19], making them more stable to train. Thus, according to the author, the following
constraints must be adopted:

a) Replace any pooling layers with strided convolutionsE] (discriminator) and fractional-
strided convolutionﬂ (generator).

Istrided convolutions are operations that shrink the feature map size from one layer to another
2fractionally-strided convolution is a form of upsampling the feature map of a convolutional layer.

2.3 DATA AUGMENTATION 7

b) Use batchnomﬂ in both the generator and the discriminator.
¢) Remove fully connected hidden layers for deeper architectures.

d) Use ReLUE| activation in the generator for all layers except for the output, which uses
Tanh.

e) Use LeakyReLUIﬂ activation in the discriminator for all layers.

An example model architecture is showing in the next figure.

128
256 —
512)
1024 . i 16 Siride 2
] - 32
. 0| AR T
woz || et i, e

|] ‘HI_-_-_-_'_'_'_- i

smgez 16

Slrl-ue 2

Eonv2 CONY 3 64

CONY 4

G(z)

Figure 2.3 DCGAN generator used for LSUN scene modeling [[13]]

After the DCGAN, researchers developed other models of GANs for specific purposes,
datasets, and samples. We briefly explain some of these different architectures in Section[2.4]

2.3 Data augmentation

The objective of any machine learning model is to use the learned concepts and apply them to
specific examples not seen by the model when it was learning. As a result, the model can gen-
eralize well from the training data to any data from the problem domain, allowing predictions
for future data.

One of the main problems in such models and signature verification systems is the low
number of samples for training the model.

To address this issue, one of the best ways to improve model performance, normally used by
deep learning approaches, is to add more data to the training set, so-called data augmentation.
Data augmentation has already proved to bring many benefits to convolutional neural networks
(CNNGs) [21], such as acting as a regularizer in preventing overﬁttingﬁin neural networks [22],
and improving performance in imbalanced class problems [23]].

3batch normalization normalizes the inputs to nonlinearities in every hidden layer

“rectified linear unit is an activation function defined as max(0,x) where x is the input

Sleaky rectified linear unit is an activation function that allow a small, positive gradient when the unit is not
active.

Qverfitting refers to a model that fits the training data too well, learning details and noise that negatively
impacts the performance.

2.4 OTHER RELATED WORKS 8

As an example, popular competition winning classifiers [7][24]] adopted data augmentation
techniques to increase the number of training samples and improve their performance.
Nowadays, some of the most popular approaches for data augmentation include:

* Flip - flipping images on horizontal or vertical axis;

Rotate - rotating an image with a certain degree;

* Crop - cropping an image and resizing it;

White noise - adding Gaussian noise;

Color - random color manipulation;

Addressing this challenge, in the handwritten signature verification context the research
community has proposed some data augmentation techniques. The different proposals are clas-
sified into two categories: generation of duplicated samples, and generation of new synthetic
identities. In the first approach, samples are generated from existing ones, while the second
one uses global characteristics from a signature database to create new samples with a unique
identity.

Following we present some of the works in this field. Huang and Yan [25] proposed some
techniques like rotation, scaling, slant, etc., to “disturb” a genuine signature and generate new
samples using “slight distortions” to generate genuine signatures and “heavy distortions” to
create forgeries. Ferrer et al. [11] proposed a signature synthesis approach cognitive-inspired
on a neuromotor model divided into an action plan representing the trajectory on a spatial grid
and the execution of the corresponding neuromuscular path applying a kinematic Kaiser filter.
Ferrer et al. [10] also proposed a cognitive inspired algorithm to duplicate offline signatures
using a set of nonlinear and linear transformations which simulated the human spatial cognitive
map and motor system.

2.4 Other related works

In recent years, researchers have developed many models for generating new data in different
applications. Ma et al. [26] developed a pose guided person image generator capable of cre-
ating images in any position given a target pose using a CGAN architecture. Another famous
application is the cross-domain transfer. Researchers developed a CycleGANJ[27], a model
which transforms an image from one domain to another one given a style, for instance, creating
a zebra from a horse. This model uses a generator network to generate new style images and
another network in the reverse order to reconstruct the real images. Additionally, two discrim-
inators are used, one to discriminate real samples, and another one to discriminate new style
samples.

Increasing the image resolution is another critical area from GANSs, Ledig et al. [28] devel-
oped a framework called super-resolution GAN or SRGAN capable of inferring photo-realistic
natural images for 4x upscaling factors which is a GAN-based network optimized for a new per-
ceptual loss. Another challenging problem refers to synthesizing images from text descriptions.

2.4 OTHER RELATED WORKS 9

StackGAN[29]] is a model capable of generating 256x256 pixels photo-realistic images condi-
tioned on text descriptions decomposing the hard problem into more manageable sub-problems
through a sketch-refinement process.

CHAPTER 3

Materials and Studied Methods

In this section, the experiment steps are presented, as well as details to reproduce the research.
This section is divided into the signature corpus, tested models, preprocessing, model architec-
tures, and image analysis.

3.1 Signature Corpus

The GPDS-300 is a publicly available offline signature dataset developed by the Grupo de
Processado Digital de Senales [30]. It is composed by 16,200 offline signatures from 300
writers. Each writer contains 24 genuine signatures and 30 skilled forgeries obtained from 10
different forgers — lastly, signatures’ size range from 153x258 pixels to 819x1137 pixels.

Figure 3.1 Dataset signatures. Each row contains signatures from one class in the dataset. The first two
columns are genuine signatures, and the last two columns are forgeries (Author)

3.2 Tested models

In this work, we tested and modified some generative adversarial network architectures to gen-
erate synthetic signatures based on samples provided by the GPDS300 dataset. Firstly, we used
an ordinary Generative Adversarial Network (GAN) [19] (Section [2.2). After that, we tested
a more stable version of this network with some improvements in the network architecture for
the training process, such as adding batch normalization and removing fully connected layers
called Deep Convolutional Generative Adversarial Network (DCGAN) [13]]. Next, we used the

10

3.3 PREPROCESSING 11

Conditional Deep Convolutional Generative Adversarial Network (CDCGAN) [12], a modi-
fied version of the DCGAN which takes advantage of the label information from the dataset
and uses it as input to improve the generator network. Finally, we employed an Info Deep Con-
volutional Generative Adversarial Network (InfoDCGAN)[14] which uses the same concept of
the CDCGAN, but instead of using labels, it learns features from the discriminator network,
besides adding a continuous code capable of varying the generated images.

Such models are designed by researchers to create synthetic images, for instance, faces, an-
imals, and objects, however, actually, they are not used for signatures. After using the ordinary
models, we proposed some modifications to improve the generated images. These modifica-
tions are further explained, and they are necessary due to the characteristics of signature images,
such as size, variability, and color range.

To begin with, all models follow one common process with slight modifications. Firstly, the
input images are preprocessed, resized and cropped to fit into the model which generates syn-
thetic signatures. This model is divided into two Convolutional Neural Networks: the generator,
which receives an input noise and outputs an image following the original image distribution.
And, the discriminator, which gets the generated signature and outputs a probability between
0 and 1 of this signature to be genuine or a forgery. These two networks work in the same
way described in the related works section. Finally, after training the system, the synthetic
signatures with the highest scores are collected, and the others are discarded.

3.3 Preprocessing

The dataset already provides segmented signatures, so we will not address extraction in this
research. However, the dataset contains images of different sizes, and convolutional neural
networks require inputs with a fixed size. Thus, the neural network needs a preprocessing step.
For this reason, we tested two preprocessing techniques.

In the first tested technique, we applied a modified version of the preprocessing method
described in [18] removing some unnecessary steps and changing parameters. In this modified
preprocessing method, we overlapped the signatures on a canvas of H x W size; which we
choose according to the largest image in the dataset. Then, we binarized the images using
Otsu’ﬂ algorithm to remove background noise according to a threshold and then find their
center of mass. Besides, we resized and cropped the image to the desired final size in the
network input (Figure[3.2)). In the second technique, we employed simple resizing and cropping
over the signatures to match the network input (Figure [3.3).

These two techniques mainly differ in the resulted number of channels of the preprocessed
image and the image quality. While in the first method we obtain one channel (Binarized)
without noise, in the second one, we obtain three channels (Red, Green, Blue) or RGB with
possible noise.

!Otsu’s algorithm perform clustering-based image thresholding automatically

3.4 MODEL ARCHITECTURES 12

0 0+

10 4 10 4
200 +

600 - 40 - i 40 i

300 1 : : 800 . . 50 50 -
0 200 400 0 500 1000

100 4 PRI 20 - r 20 A i
400 - Y f?,‘j* | - . | F e
200 4 7&/ 0 .ﬁ-— 0 .i-

Figure 3.2 Technique 1. Preprocessed images with 64x64 pixels. (a) Original (b) Centered image in a
pre-defined canvas size without noise (c) Resized (d) Cropped (Author)

Ciniginal image Resized and Cropped

L]

Figure 3.3 Technique 2. Original image and 64x64 pixels resized and cropped image (Author)

3.4 Model architectures

To achieve a suitable architecture model capable of generating images as close as possible to
the original ones, we explored different architectural models. The first proposed model known
as GAN has been successfully employed to create images of numbers in the handwritten digit
MNIST dataset [[19]. Nevertheless, this model did not produce high-quality signature images
in our experiments. As a result, we decided to test a more stable network.

As proposed in [13], DCGAN introduces several improvements for training higher resolu-
tion and deeper networks. We tested this model as designed in the original paper with 64x64
pixel output images. Nevertheless, this size was too small to generate high-quality images for
signatures. Thus, we modified the DCGAN architecture to receive and generate 128x128 pixel
images adding an extra layer in both generator and discriminator. However, in both models,
the generator network does not have any initial information to help it create synthetic samples,
unless a uniformly sampled noise vector, impacting in the model performance. The model
architecture for generating 64x64 signature images is available in the Appendix section.

To address this issue, we employed another model to improve the quality of the generated
images. The CDCGAN [12] uses the information from real images by adding a label as a
new parameter to the generator, and also in the discriminator to help it distinguish between
real and fake images (Figure 4.4). In other words, the generator gets a hint about how to
start the generative process, resulting in synthetic images inheriting the characteristics of the
added extra labels. Since the results looked promising, we modified this network architecture

T
40

3.5 IMAGE ANALYSIS 13

to receive and generate 256x256 pixels images. The model architecture for generating 256x256
pixels signature images is available in the Appendix section.

Finally, to improve the variability of the generated images, we tested the InfoDCGAN —
a mix between an InfoGAN[14] and a DCGAN[13]. The main idea is to provide the generator
network with latent code, which has meaningful and consistent effects on the output. Besides
the training, this architecture differs from the CDCGAN in the generator input and the discrim-
inator output layers. In CDCGAN, the network receives labels from the dataset, nevertheless
in InfoDCGAN the generator network receives latent features extracted by the discriminator
network. For instance, the generator input becomes the sum of z, and a latent code ¢ composed
of a discrete code (mapping the classes), and a continuous code (changeable from -2 to +2 in
our case). And, the discriminator network outputs the prediction of one image being real and
fake, besides the estimation of the latent code ¢ (Figure [4.4)).

3.5 Image analysis

To guarantee that the generated images are different, we used the pixel-by-pixel difference or
in other words, the absolute difference between each pixel pair. Since the result of this dif-
ference becomes a black image with just a few white pixels, visually its hard to identify the
difference between pixels. For this reason, to facilitate the resulted image visualization, we
used the HSV (hue, saturation, value) image colorma It is important to notice that we tested
two preprocessing techniques, see Section [3.3] however, this image analysis is only applied to
the models with the best results which use the second preprocessed technique, resulting in RGB
images. Additionally, we employed two metrics to calculate the similarity between the gener-
ated images and real images from the dataset. Firstly, the peak signal-to-noise ratio (PSNR)
[31]], an expression for the ratio between the maximum possible value (power) of a signal, and
the power of distorting noise that affects the quality of its representation. Secondly, the Struc-
tural Similarity Index Measure (SSIM) [32], a method for measuring the fidelity between two
images based on the computation of three terms, namely the luminance term, the contrast term,
and the structural term. The PSNR is defined as:

MAX,
PSNR =20-1lo 3.1
810 7irsE (3.1
with MSE equals to:
1 m—1n—1)
MSE = — 3 3 [X(i,/) =Y (i,)] (3.2)
mn iZo j=o

where MAX, is the maximum signal value that exists in our original image, x represents the ma-
trix data of our original image, y represents the matrix data of our degraded image, m represents
the numbers of rows of pixels of the images and i1 represents the index of that row, n represents
the number of columns of pixels of the image and j represents the index of that column

ZHSV is an alternative representations of the RGB color model, it is based upon how colors are organized and
conceptualized in human vision in terms of other color-making attributes, such as hue, lightness, and chroma

3.5 IMAGE ANALYSIS 14

(2petty +C1) + (204 + C,)

SSIM(x,y) =
(y)(ﬁ+%+qxﬁ+@+g)

(3.3)

where (ux,ox) and (Wy, oy) are the mean intensity and standard deviation set of image block
x and image block y, respectively, while xy denote their cross-correlation. C1 and C2 are small
constant values to avoid instability problem when the denominator is close to zero according to

[32].

CHAPTER 4

Experiments and Discussion

Several experiments were performed using different models, dataset classes, parameters, and
signature output sizes. In this section, we will explore the experimental protocols and results.
This section is divided into the development environment, preprocessing experiments, , training
the neural network, DCGAN experiments, CDCGAN experiments, InfoDCGAN experiments,
and image analysis.

4.1 Development Environment

We developed the experiments using Python and the PyTorch framework [33]], an open source
deep learning platform for research prototyping. To run all the experiments, we used the Google
Collaboratory [34]], Google’s free cloud service for Al developers. Collaboratory allows the
use of Jupyter notebooks EI running everything in a browser storing code in Google drive. This
environment has the following hardware characteristics: Tesla K80 GPU, 2-core Intel Xeon
CPU 2.30GHz, and 13GB RAM.

4.2 Preprocessing experiments

The preprocessing step is crucial to the stability of the network since the generator network
learns to create synthetic images from the input’s signature image, and the dataset images have
different sizes. Thus, we performed some tests to resize the images to the network input size
without cutting any part of the signature and keeping the aspect ratio between height and width.
Using the first technique described in Section[3.3] the best results for 64 x 64 pixels images are
illustrated in Figure 4.1)and Figure 4.2

Analyzing the empirical results, we deduced that 64 x 64 pixels samples do not have enough
pixels to guarantee the quality of the signature. Besides the size, the image normalization pro-
vides a uniform representation for all images in the dataset, which contributes to the generative
adversarial network training. However this technique has one drawback, to centralize the im-
age and remove the noise, we need to change the image to grayscale, losing its three channels
property, so it becomes grayscale, i.e., with only one channel. Consequently, the image loses
many features related to the RGB aspect.

In the next step, we experimented 128x128 pixel input images due to easily adaptation to the

I'The Jupyter Notebook is an open-source web application that allows users to create and share documents that
contain live code.

15

4.2 PREPROCESSING EXPERIMENTS 16

200 A

1009 s
400 4 ! ot
200 4 =

600 4

800 -

!
o 200 400 0 500 1000
0 0
10 4 10 4
204 Iy 20 4 'y
i " I .
30 "T-‘J 30 | r’-r-s
. a-

40 - i 40 i
50 - 50 4

0 20 40 0 20 40

Figure 4.1 Preprocessed images with 64x64 pixels. From the top to the bottom, left to the right, original,
centered, resized and cropped images (Author)

DCGAN original architecture (symmetric layers, i.e., 4x4, 8x8, 16x16, 32x32, 64x64). Finally,
we experimented rectangular 160x256 pixel input images. For real purposes, we realized that
signatures are usually more extensive. This characteristic increases the necessity of a network
which accepts rectangular inputs. In both cases, signatures had a higher resolution quality and
better depicted the original ones (Figure 4.2)).

o] 0 0 0

100 200+ st 200

400 § Lt 400 A Lagra it
200 4 200 4

600 4 600
300 | ‘ . 5601 . ‘ 300 | ‘ . g6 . ‘

o 200 400 0 500 1000 0 200 400 0 500 1000
o 0
o 0
25 - 25 |
100 4
[7 50 4 50 4 i 50 4 /:‘ 5
W e S|k 14y

200 = d = 75 1 =

100 ‘ 6

100 A
300 | 150 4 125 4
. .
4 ' ! ! 0 100 200 T T 125 A r -
0 100 200 300 400 0 50 100 0 50 100

Figure 4.2 Preprocessed images with 160x256 pixels (first two columns) and 128x128 pixels (last two
columns). In the first row, original and centered. In the second row, resized and croped.(Author)

Finally, to get to the results presented in the previous figures, three parameters were neces-
sary: canvas size, resizing size and crop size. The final parameters are provided in Table
for all the experimented input sizes.

Regarding the second preprocessing technique described in Section [3.3] images were sim-
ply resized to the network input size as depicted in Figure 4.3

4.3 TRAINING THE NEURAL NETWORKS 17

DCGAN input | Canvas size | Resizing size | Crop size
64 x 64 840 x 1360 | 64 x 64 64 x 64

128 x 128 840 x 1360 | 150 x 150 128 x 128
160 x 256 840 x 1360 | 340 x 484 160 x 256

Table 4.1 Preprocessing final parameters in pixels

ﬂﬁwcﬂ

Figure 4.3 Images with 64x64 pixels, 128x128 pixels, 160x256 pixels, and 256x256 pixels (Author)

4.3 Training the neural networks

For training the DCGAN, we used most of the parameters from the original paper [13]], since
they already work for other purposes and then we changed them empirically to improve the
network results for handwritten signature recognition. Initially, we trained the DCGAN in the
GPDS300 dataset with all provided signature classes to simulate a writer-independent scenario,
but after some tests, we changed the training process to a writer-dependent approach with
only one class. We also trained the network with 20, 15, 10 and finally five real signature
examples to define the minimum number of required signatures for the system. It is important
to notice that this number of signatures was chosen empirically. We trained the model for
200 epochs. The weights were initialized with a normal distribution zero-centered and with
0.02 standard deviation. Optimization was performed in the model with mini-batch stochastic
gradient descent (SGD) with a mini-batch size of 1 due to the small number of samples, and an
Adam optimizer with 3 = 0.9, and 0.0001 learning rate in both generator and discriminator. In
the discriminator, we set LeakyReL U slope to 0.2. Finally, we used a 100-dimensional normal
distribution vector Z as the generator’s input. Other parameters, such as kernel size, stride,
padding, and bias for convolutional layers are available in the Appendix section. For training
the CDCGAN, we used the same parameters from the DCGAN, except that we provided the
number of classes. It is worth to remember that in the infoDCGAN, instead of classes, this
number represents the discrete code. The others parameters for these two models can be found
in the Appendix section.

4.4 DCGAN 18

|I| | D | |c:;m} |

1 N

Discriminator

[/l'l |

(real image & label) Real image

Generator Generator
I A L= | []

(latent space & label) {latent space & c)

Figure 4.4 CDCGAN and infoDCGAN training schemas [35]]

44 DCGAN

After the preprocessing step, we trained the DCGAN with 64x64 pixels input images and both
preprocessing approaches to understanding if this model can create new synthetic signatures
from the real samples. We divided this test into two parts: a writer-independent test and a
writer-dependent test. In the first case, we performed an analysis with all 300 classes of the
dataset. The objective was to understand if the DCGAN can generalize its results to any sig-
nature and create new signatures for any new sample in the network. In the second case, we
performed a test with only one class of the dataset. The objective was to create new signatures
for one writer. For testing purposes, we split the dataset into 90% of the images for training and
10% for testing, mainly due to the number of samples for each class, and to avoid underﬁttingﬂ
Providing as many samples as possible. One class contains 24 real images and 30 fake images,
so for training with all samples, we would have at least five to six testing samples. On the
other hand, in the case of training only with real images, for instance, 20, two to three genuine
signatures would be sufficient to test the model.

In the first test during the training process, the network had an unstable behavior, and the
generator did not create images close to the genuine ones for all epochs (Figure 4.5)).

Analyzing the training losses in the first plot of Figure {.6] and Table {.2] we observed

2Underfitting occurs if the model or algorithm shows low variance but high bias. Underfitting is often a result
of an excessively simple model leading to poor predictions.

4.4 DCGAN 19

— T T T Ty

'.",_.-.-,’,,,. L

| " k% "\L“J *I-'i."

i.- r U -‘L 3:|

“ i) . w“.i -J-.'U -~ = r*ﬂ"
by J‘ "ur J ;_

:_ '.1_ L"‘ d."i a.l..*.t e
BEAE Al e

‘.r..'\.l..h'....l._ﬁ'{. .l'...'“ i

Figure 4.5 Generated sample after 60 epochs and real sample (Author)

that after the first epoch, the generator network kept a high training loss, and it was not able
to decrease its loss and get generated images closer to the real ones. On the other hand, the
discriminator had a low training loss which means that it learned to recognize features of a
genuine signature and it was able to discriminate between generated samples and real samples
resulting in a D training loss equals to zero, after the network stabilization. The second plot
in Figure [4.6] confirms this hypothesis. D(x) is the probability of an image x being considered
real, where x is a real image, while D(G(z)) is the probability of an image generated by G
with input noise z being considered as real, where G(z) is a fake image. According to this
plot, the discriminator gave a high probability for real images x, most of the time 1, while it
gave low probabilities to generated images G(z), close to 0. Finally, these results show that
the network did not achieve equilibrium and that the discriminator network was too powerful
compared to the generator. As a result, generated images did not reach the expected outputs.
We consider that some of the main problems of this architecture are: small input size, white
pixels in the image, imbalance between generator and discriminator networks and the grayscale
input images. Consequently, we empirically considered that the original DCGAN with this
preprocessing step was not a good candidate as a data augmentation technique for handwritten
signature verifications systems.

Epoch | Loss D | Loss G | D(x) D(G(z))
0 0.7063 | 19.9575 | 0.6973 | 0.2923
15 0 374578 | 1 0

45 0 37.8084 | 1 0

53 0 23.1873 | 1 0

60 442783 | 47.5395 | O 0

Table 4.2 DCGAN training statistics

After this attempt, we adjusted some parameters of the network to obtain a better perfor-
mance. Initially, we changed the Adam optimizer learning rate. We increased the learning
rate of the generator to twice the discriminator, but we did not succeed. Also, we increase the
generator rate in ten times more than the discriminator, but the model did not converge. As
a result, we investigated the influence of other parameters and the preprocessing technique in
the results, and we discovered that the DCGAN model was not working correctly to images in

4.4 DCGAN 20

Figure 4.6 Generator training loss in green and discriminator training loss in blue. In the second plot
D(x) in blue and D(G(z)) in green. (Author)

grayscale, but only in RGB format.

So, in the next experiments, for preprocessing, we employed scaling and resizing tech-
niques over the signatures to match the 64x64 pixels input size of the DCGAN. Consequently,
signatures heigh and width had a little distortion when fitting into the network.

Crriginal image Resized and Cropped

: Z. ¢

L

Figure 4.7 Original image and 64x64 Preprocessed image (Author)

In Figure 4.9 and Figure [4.10] it is possible to identify some of the generated images from
this model. After training for 250 epochs, the network converged to one distribution which
creates signatures close to the original ones. However, during the training process, the actual
weights of the network could be already used to generated new data samples, for instance
in the epochs 100 and 175, generated samples already looked like real samples. To see more
examples of generated samples during the training process, refer to Figure[A.5] We noticed that
the generated samples have different shapes due to the intraclass variability. Signatures from
the same user can differ even if they are real samples, an intrinsic characteristic of signatures.

4.4 DCGAN

=]

5

training losses

annirhe

= E e
o m O

Dix) and CHG(Z))
=
dw

1]] a
epochs

r__,..-#"
&

21

A

1] 100

Figure 4.8 Generator training loss in green and discriminator training loss in blue. In the second plot

D(x) in blue and D(G(z)) in green (Author)

Epoch Real sample

Generated sample

100 !

#

175 %

A

238 : E

#

Figure 4.9 DCGAN 64x64 results per epoch (Author)

HAXAARH LS
el e dd

Figure 4.10 DCGAN 64X64 images for one signature. In the first row real images, in the second row
generated images (Author)

4.5 CDCGAN 22

Analyzing the plots from the training process in Figure 4.8 we realized that the training loss
of the generator network decreased during the time, while the discriminator loss always kept
low. Even with examples close to the generated ones, the generator network did not converge to
a zero training loss. In our point of view, this behavior is explained by the intra-class variability
and the background color of the images. Signatures of the same user are not equal, so each
time the network updates its weights through backpropagation to fit one image well, it fails for
other ones, which is considered an overfitting problem. On the other hand, generated images
do not have a white background causing the discriminator to not give higher values of D(G(z))
and lower G training loss (Figure [4.8§).

Finally, this model is suitable for data augmentation for handwritten verification systems,
where the network input is a 64x64 input image.

After verifying the consistency of the model to 64x64 images, we tested it for bigger images,
for instance, the sizes that we considered previously 128x128, and 160x256. For the 128x128
architecture, we added one more layer to the generator and discriminator architectures. The
160x256 architecture was a little more tricky because ordinary models usually consider only
square images, however, to get the expected input and output size, we added one more layer
with a rectangular kernel size in the first convolutional layer of the generator and a fully con-
nected layer to the output of the discriminator. Nevertheless, for both architectures, within 200
epochs and several changes in the learning rate and the number of parameters, the models did
not converge, and the generated samples were meaningless as we can see in Figure 4.T1]

Figure 4.11 Modified DCGAN generated samples to 128x128 and 160x256 sizes in different epochs
(Author)

4.5 CDCGAN

DCGANSs demonstrated to be a promising technique for generating 64x64 pixels images. How-
ever, the model failed to scale for bigger images, for instance, 128x128 pixels. Since we de-
signed our method to signature verification systems, in the training process, the signature’s
labels are assured to be true, because a contract or an official document provide them. So, an
approach used to problems where labels are already known beforehand is the Conditional GAN
or in the case of our experiments a modified version called conditionalDCGAN. This model

4.5 CDCGAN 23

uses the extra information provided by the images and encodes it into a 1-hot vector feeding it
together with the noise z to the generator. By adding this additional parameter, the generator
can start its generative process with more information than only a uniform distribution.

Firstly, we used this model to generate 64x64 pixels images, and as expected, the model
created images compared as the previous DCGANSs results. After such findings, we increased
the network’s input and output, by adding more layers to the generator and discriminator. We
started with 128x128 pixels images with success, and finally, we tested the model with 256x256
pixels images with the architecture described in Table[A.3]and Table [A.4] In this experiment,
for preprocessing, we employed scaling and resizing techniques over the signatures to match
the 256x256 input size of the CDCGAN. Consequently, signatures heigh and width had a little
distortion when fitting into the network. However, images with this size demonstrated to have
a better image-quality than 64x64 ones.

Onginal image Resized and Cropped

£

Figure 4.12 Original image and 256x256 pixels Preprocessed image (Author)

Analyzing the plot from the loss per iteratiorﬁ in the training process for one class with
256x256 pixels images Figure 4.13] we realized that both training losses decreased during the
time converging to a zero loss. In our point of view, this demonstrates the equilibrium of the
proposed method — these metrics were also reflected in the results. In the epoch 120, we
already could see a clear definition of the image and use it as an augmented data. The problem
of gray background demonstrated in the DCGAN approach also decreased significantly, and
the model was able to generate images from a dataset with only five real images. To see more
examples of generated samples during the training process, refer to Table

In Figure[4.14]we can see the results of the CDCGAN generative process in different epochs
for different classes of signatures. As a matter of comparison, original rescaled images were
added to show the resemblance with the generated samples. We realized that the model was
able to create images, despite the signature’s shape or trace. Nevertheless, according to the
results, images did not vary significantly in the different epochs, an aspect that could be further

3The number of iterations in one epoch is equals to the number of images. As a consequence, for our system
with five images, we can compare 1000 iterations with 200 epochs.

4.5 CDCGAN 24

55
1] — _loss

0 20 400 00 0 1000
Iter

Figure 4.13 CDCGAN loss per iteration with 256X256 pixels images(Author)

improved. Addressing the number of generated images, we considered empirically that every
image after the epoch 150 was able to be used as an augmented data. For this reason, we believe
that for a model with five genuine signatures as input, this model can generate 50 synthetic
ones. Finally, in our point of view, this model demonstrated to be a suitable approach for data

augmentation for handwritten verification systems in a scenario with bigger images, such as
256x256 pixels as depicted in Figure .14

4.5 CDCGAN

iyl e
=552
o RERE
- A AA
KPP

25

Figure 4.14 256X256 generated images. From the left to the right, original, 256x256 pixels resized,

and three generated samples (Author)

4.6 INFODCGAN 26

4.6 InfoDCGAN

Finally, to improve the variability of our model, we tested the InfoDCGAN [14], an information-
theoretic extension to the GAN able to learn disentangled representations. We trained the In-
foDCGAN with the same parameters described in Section except for the length of the
continuous code. In our case, we changed this value to one, because we were working with one
class.

In the first experiment, we tested our model with five genuine signatures as inputs in 200
epochs. We realized that this number of epochs was not enough to make the model converge.
For this reason, we doubled the number of epochs to achieve convergence. Even so, the model
did not converge. Consequently, we adjusted the InfoDCGAN model structure to resemble the
CDCGAN one, since this last model showed promising results. We removed the latent feature
output from the discriminator and its loss update from the training process. Besides that, we
added labels in both generator and discriminator as in the CDCGAN Figure d.13]

i il

Discriminator Discriminator Discriminator

/L

< | L~ J[» |
Real image T (real image & label)

Generator Generator

év&l |°||z/|"|\v

(latent space & label) (latent space & c) (c & latent space & label)

[T[]

(real image & label)

Figure 4.15 (a) Original CDCGAN (b) InfoDCGAN (c) adjusted InfoDCGAN [35]]

Additionally, we used 400 epochs to analyze the generated results longer. We demonstrate
the results from this experiment in Figure[d.16] According to the generated images depicted in
the figure, examples did not vary significantly with the modified InfoDCGAN implementation
even though we introduced the continuous code, a variational latent code, which should help in
this variance.

4.6 INFODCGAN 27
Figure 4.16 Generated images from different epochs from one class using five signatures as input (Au-
thor)

As a result, we investigated the continuous code contribution in the generated images. We
multiplied this code by many constants (0.01, 0.1, 10, 100, 1000) to understand what was its
impact. However, analyzing the results, we realized that the continuous codes were not directly
influencing the signature variation through the epochs as we expected.

Following that, we investigated the data influence over the signature’s variation. Our central
hypothesis was that the five genuine signatures were too identical and in an insufficient number
to create a considerable variety in the generated examples. Thus, we added more samples to
the data input. Firstly, we tested our model with 20 genuine signatures — additionally, we also
checked it with 20 genuine signatures and 25 forgeries. Figure d.17]

Figure 4.17 First row, examples generated with 20 genuine images as input in epochs 90, 120, 220,
250, and 400. Second row, examples generated with 20 genuine images and 25 forgeries in epochs 80,
90, 120, 150, and 400 (Author)

Finally, we experienced that the tests with five signatures did not have a significant varia-
tion. On the other hand, in tests with more samples, such as 20 genuine signatures, the model
generated more than one variety of examples. However, for the model with 20 genuine signa-
tures and 26 forgeries, there was not a convergence, probably due to a considerable difference
between the structures of genuine signatures and copies. It is important to notice that this would
not be the real situation since the application receives only genuine signatures, and the results
behaved as we expected. Consequently, we deduced that the number of data input samples
influences directly in the model variance. Five signatures might not be enough to achieve the
expected degree of variation to the generated images, and increasing the number of signatures
tends to increase variability. However, adding samples with a different structure can result in a

4.7 IMAGE ANALYSIS 28

lack of convergence.

4.7 Image Analysis

Understanding the quality of the generated images is an essential step in the data augmentation
process. For this reason, we analyzed and compared the generated images with themselves and
with the real ones using some metrics. Firstly, since there was not a considerable variability
between samples, we performed a test to check that generated images were different among
themselves. Thus, we calculated the pixel-by-pixel difference from six images separated in
three different classes (Figure 4.19), and applied the HSV colormap according to the color
scheme in Figure .18} provided by [36] .

hev [W I R $u

Figure 4.18 HSV image colormap

Figure 4.19 Pixel-by-pixel difference between two images for three classes in epochs 180 and 200 with
HSV image colormap (Author)

The figure is the subtraction of color values from every pixel in both images. So, according
to the picture, we noticed that there were some differences between pixels from generated
images in different epochs. The pixel difference in the third column where red means no
difference and green means some variation according to the color scheme, demonstrates that
pixels related to the edges of the signatures have some differences, meaning that our method is
changing features related to the signatures format and showing that the images through different
epochs are indeed different.

After analyzing this difference, we calculated the peak signal-to-noise ratio (PSNR) (3.1)
between generated, real and fake images. This ratio is usually used as a quality measurement
between an original and a compressed image. The higher the PSNR, the better the quality of the
compressed, or reconstructed image. There is an inverse relationship between PSNR and MSE.

4.7 IMAGE ANALYSIS 29

So, a higher PSNR value indicates the higher quality of the image. The MSE metric measures
the average squared difference between the estimated image and the estimation, corresponding
to the expected value of the squared error loss.

Despite the PSNR values, large distances between pixel intensities do not necessarily mean
the contents of the images are different [31]. Thus, to get another measure of the real difference
between images, we employed another metric, the Structural Similarity Index Measure (SSIM)
(3-3). The SSIM is a perception-based model that considers image degradation as perceived
change in structural information, such as directional pixel intensity. In other words, it recog-
nizes the difference in the structural information of an image. The SSIM values vary between
-1 and 1, where the 1 indicates perfect similarity, while O shows the opposite, finally -1 is only
achieved theoretically.

To serve as a benchmark, we calculated the PSNR and SSIM, first comparing 300 real
images with other 300 real images from the same classes, and then comparing 300 real images
with 300 forgeries from the same classes (Table4.3)). From this table, we analyzed that despite
being from the same class, one real signature differs from another real signature from the
same user. Furthermore, when comparing real images with forgeries, the PSNR and the SSIM
decrease, since the images are less similar.

Metric | Real/Real | Real/Forgery
PSNR | 7.35£1.27 | 7.02£1.15
SSIM | 0.52+£0.10 | 0.50+£0.09

Table 4.3 PSNR and SSIM benchmark comparing real images with other real images and forgeries from
the same classes

Using the described metrics, experiments were performed with fifty generated images from
five classes, each class containing ten generated images from epochs 155, 160, 165, 170, 175,
180, 185, 190, 195, 200. Following, we compared the generated images with real ones and
forgeries from the same classes. The results are depicted in Table 4.4} Comparing these values
with the values from Table 4.3 we realized that the value of PSNR between generated images
and real ones (10.53 +- 3.04) is in the same range compared to real images and other real images
from the same classes (7.35 +- 1.27) considering the mean and standard deviation. Comparing
to forgeries, the results showed that the value of PSNR in the generated images (8.96 +- 0.40)
is higher than the value from real ones (7.02 +- 1.15), meaning that generated images have less
influence of noise than real ones.

Furthermore, the SSIM measure which recognizes local variations and the image structure
was employed. Comparing the values from generated images with real ones (0.56 +- 0.17),
and real ones with other real ones from the same classes (0.52 +- 0.10), the SSIM value was
considered equal, according to the mean and standard deviation demonstrating that the structure
of generated images is as good as the structure of real images from the dataset. Additionally,
the value of the comparison between generated images and forgeries (0.46 +- 0.03) is in the
same range as the value from real ones compared to forgeries (0.50 +- 0.09).

Finally, according to the results, we consider that the image quality of the synthetic samples
is acceptable when compared to the range of images from the dataset.

4.7 IMAGE ANALYSIS

Metric | Generated/Real | Generated/Forgery
PSNR | 10.53+£3.04 8.96 £0.40
SSIM | 0.56£0.17 0.46+0.03

30

Table 4.4 PSNR and SSIM comparing generated images with real ones and forgeries from the same

classes

CHAPTER 5

Conclusions

Handwritten signature verification systems are used in a wide variety of security systems to
verify the identity of a person. One of the biggest challenges in this field is the limited number
of samples per user. Generally, the amount of information about each person is limited to three
or four signatures presented in one official document, which makes the biometric verification a
challenging task and restricting the performance of real applications. In this work, we proposed
a data augmentation technique using the CDCGAN architecture, and an adjusted InfoDCGAN
architecture, modified versions of a DCGAN to increase the number of signatures for such sys-
tems. In our experiments, we considered that this model is capable of generating high-quality
synthetic signatures to be used as extra data to handwritten signature verification systems, cre-
ating ten times more signatures than the input, and finally achieving the proposed objective.
We consider that one of the main advantages of our method is the automatic generation of new
samples with reasonable structural information, and meaningly features collaborating with the
training of verification systems. As research, this work mainly contributes to open a different
view to the research community about the application of deep learning methods in the creation
of synthetic samples, and the enhancement of handwritten signature verification systems.

5.1 Limitations

We developed a technique for data augmentation restricted to writer-dependent verification
systems. Scaling this model to a writer-independent approach would demand further improve-
ments without guarantees. Furthermore, our neural network is limited to 256x256 pixels im-
ages.

5.2 Future work

We believe that there are several points to improve. Firstly, working on enhancements to the
variability of the generated images, then create a network capable of receiving and producing
images of different sizes, furthermore; testing other generative models are important investi-
gations to be made. Additionally, it is essential to examine the proposed data augmentation
technique in already-known state-of-the-art algorithms in the signature verification field to un-
derstand what is the impact in their final results.

31

APPENDIX A

appendix

Layer Size Parameters

Input 100x1x1 input z = 100x1x1

Transposed Convolution | 512x4x4 kernel size=(4, 4) stride=(1, 1) bias=False

Batch normalization 512x4x4 eps=1e-05 momentum=0.1

ReLU 512x4x4

Transposed Convolution | 256x8x8 kernel size=(4, 4) stride=(2, 2) padding=(1, 1) bias=False
Batch normalization 256x8x8 eps=1e-05 momentum=0.1

ReLLU 256x8x8

Transposed Convolution | 128x16x16 | kernel size=(4, 4) stride=(2, 2) padding=(1, 1) bias=False
Batch normalization 128x16x16 | eps=1e-05 momentum=0.1

ReLU 128x16x16

Transposed Convolution | 64x32x32 | kernel size=(4, 4) stride=(2, 2) padding=(1, 1) bias=False
Batch normalization 64x32x32 | eps=1e-05 momentum=0.1

ReLLU 64x32x32

Transposed Convolution | 3x64x64 kernel size=(4, 4) stride=(2, 2) padding=(1, 1) bias=False
Tanh 3x64x64

Table A.1 DCGAN 64x64 Generator architecture

32

APPENDIX A APPENDIX 33

Layer Size Parameters
Input 3x64x64
Convolution 64x32x32 | kernel size=(4, 4) stride=(2, 2) padding=(1, 1) bias=False
Batch normalization | 64x32x32 | eps=1e-05 momentum=0.1
LeakyReLU 64x32x32 | negative slope=0.2
Convolution 128x16x16 | kernel size=(4, 4) stride=(2, 2) padding=(1, 1) bias=False
Batch normalization | 128x16x16 | eps=1e-05 momentum=0. 1
LeakyReLU 128x16x16 | negative slope=0.2
Convolution 256x8x8 kernel size=(4, 4) stride=(2, 2) padding=(1, 1) bias=False
Batch normalization | 256x8x8 eps=1e-05 momentum=0.1
LeakyReLU 256x8x8 negative slope=0.2
Convolution 512x4x4 kernel size=(4, 4) stride=(2, 2) padding=(1, 1) bias=False
Batch normalization | 512x4x4 eps=1e-05 momentum=0.1
LeakyReLU 512x4x4 negative slope=0.2
Convolution 1x1x1 kernel size=(4, 4) stride=(1, 1) bias=False
Sigmoid Ix1x1
Table A.2 DCGAN 64x64 Discriminator architecture
Layer Size Parameters
Input 101x1x1 input z = 100x1x1 , number of classes = 1x1x1
Transposed Convolution | 2048x4x4 kernel size=(4, 4) stride=(1, 1) bias=False
Batch normalization 2048x4x4 eps=1e-05 momentum=0.1
ReLLU 2048x4x4
Transposed Convolution | 1024x8x8 kernel size=(4, 4) stride=(2, 2) padding=(1, 1) bias=False
Batch normalization 1024x8x8 eps=1e-05 momentum=0.1
ReLLU 1024x8x8
Transposed Convolution | 512x16x16 | kernel size=(4, 4) stride=(2, 2) padding=(1, 1) bias=False
Batch normalization 512x16x16 | eps=1e-05 momentum=0.1
ReLU 512x16x16
Transposed Convolution | 256x32x32 | kernel size=(4, 4) stride=(2, 2) padding=(1, 1) bias=False
Batch normalization 256x32x32 | eps=1e-05 momentum=0.1
ReLLU 256x32x32
Transposed Convolution | 128x64x64 | kernel size=(4, 4) stride=(2, 2) padding=(1, 1) bias=False
Batch normalization 128x64x64 | eps=1e-05 momentum=0.1
ReLLU 128x64x64
Transposed Convolution | 64x128x128 | kernel size=(4, 4) stride=(2, 2) padding=(1, 1) bias=False
Batch normalization 64x128x128 | eps=1e-05 momentum=0.1
ReLLU 64x128x128
Transposed Convolution | 3x256x256 | kernel size=(4, 4) stride=(2, 2) padding=(1, 1) bias=False
Tanh 3x256x256

Table A.3 CDCGAN 256x256 Generator architecture

APPENDIX A APPENDIX 34

Layer Size Parameters

Input 3x256x256

Convolution 64x128x128 | kernel size=(4, 4) stride=(2, 2) padding=(1, 1) bias=False
Batch normalization | 64x128x128 | eps=1e-05 momentum=0.1

LeakyReLU 64x128x128 | negative_slope=0.2

Convolution 128x64x64 | kernel size=(4, 4) stride=(2, 2) padding=(1, 1) bias=False
Batch normalization | 128x64x64 | eps=1e-05 momentum=0.1

LeakyReLLU 128x64x64 | negative_slope=0.2

Convolution 256x32x32 | kernel size=(4, 4) stride=(2, 2) padding=(1, 1) bias=False
Batch normalization | 256x32x32 | eps=1e-05 momentum=0.1

LeakyReLU 256x32x32 | negative_slope=0.2

Convolution 512x16x16 | kernel size=(4, 4) stride=(2, 2) padding=(1, 1) bias=False
Batch normalization | 512x16x16 | eps=1e-05 momentum=0.1

LeakyReLU 512x16x16 | negative_slope=0.2

Convolution 1024x8x8 kernel size=(4, 4) stride=(2, 2) padding=(1, 1) bias=False
Batch normalization | 1024x8x8 eps=1e-05 momentum=0. 1

LeakyReLU 1024x8x8 negative_slope=0.2

Convolution 2048x4x4 kernel size=(4, 4) stride=(2, 2) padding=(1, 1) bias=False
Batch normalization | 2048x4x4 eps=1e-05 momentum=0.1

LeakyReLLU 2048x4x4 negative_slope=0.2

Convolution 1x1x1 kernel size=(4, 4) stride=(2, 2) padding=(1, 1) bias=False
Sigmoid Ix1x1

Table A.4 CDCGAN 256x256 Discriminator architecture

APPENDIX A APPENDIX

Epoch | Loss D | Loss G | D(x) D(G(z)) | Image
0 1.0591 | 4.6433 |3.799 | 872
25 100 | 5.1842 |9.990 |89
50 529 | 75555 | 9492 |7
75 73 50984 | 9.991 | 64 s
A
100 |53 83251 | 9.999 |52 i
150 | 1329 | 11.1238 | 8.767 | 8.012 '{ﬁ
175 | 71 50125 | 1.2000 | 70 %
200 |51 70938 | 9.996 |47 %
i 13 -
25 |52 54688 | 9.992 | 44 i %i
t
250 |337 | 3.8009 |9.999 | 330 i %

Table A.5 DCGAN 64x64 training process

35

APPENDIX A APPENDIX

Epoch | Loss D | Loss G

0 1.36 19.53

25 4.90 8.75

50 1.42 4.25

75 0.37 2.83

100 0.50 0.81

125 0.10 3.0

&
&
&
£

175 0.12 2.67

200 0.22 02.09

Table A.6 CDCGAN 256x256 training process

Bibliography

[1] L. G. Hafemann, R. Sabourin, and L. S. Oliveira. Offline handwritten signature verifica-
tion — literature review. In 2017 Seventh International Conference on Image Processing
Theory, Tools and Applications (IPTA), pages 1-8, Nov 2017.

[2] Z.Zhang, X. Liu, and Y. Cui. Multi-phase offline signature verification system using deep
convolutional generative adversarial networks. In 2016 9th International Symposium on
Computational Intelligence and Design (ISCID), volume 2, pages 103—107, Dec 2016.

[3] L. G. Hafemann, R. Sabourin, and L. S. Oliveira. Analyzing features learned for offline
signature verification using deep cnns. In 2016 23rd International Conference on Pattern
Recognition (ICPR), pages 2989-2994, Dec 2016.

[4] Meenakshi K. Kalera, Sargur N. Srihari, and Aihua Xu. Offline signature verification and
identification using distance statistics. IJPRAI, 18:1339-1360, 2004.

[5] J. Fierrez-Aguilar, N. Alonso-Hermira, G. Moreno-Marquez, and J. Ortega-Garcia. An
off-line signature verification system based on fusion of local and global information.
In Davide Maltoni and Anil K. Jain, editors, Biometric Authentication, pages 295-306,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[6] M. A. Ferrer, M. Diaz-Cabrera, and A. Morales. Synthetic off-line signature image gen-
eration. In 2013 International Conference on Biometrics (ICB), pages 1-7, June 2013.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. Neural Information Processing Systems, 25, 01 2012.

[8] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional net-
works. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors, Com-
puter Vision — ECCV 2014, pages 818-833, Cham, 2014. Springer International Publish-
ing.

[9] D. R. Kisku, A. Rattani, P. Gupta, and J. K. Sing. Offline signature verification using
geometric and orientation features with multiple experts fusion. In 2011 3rd International
Conference on Electronics Computer Technology, volume 5, pages 269-272, April 2011.

[10] M. A. Ferrer, M. Diaz-Cabrera, and A. Morales. Synthetic off-line signature image gen-
eration. In 2013 International Conference on Biometrics (ICB), pages 1-7, June 2013.

37

BIBLIOGRAPHY 38

[11] M. A. Ferrer, M. Diaz-Cabrera, and A. Morales. Static signature synthesis: A neuromotor
inspired approach for biometrics. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 37(3):667-680, March 2015.

[12] M. Mirza and S. Osindero. Conditional Generative Adversarial Nets. ArXiv e-prints,
November 2014.

[13] A. Radford, L. Metz, and S. Chintala. Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks. ArXiv e-prints, November 2015.

[14] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel.
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative
Adversarial Nets. ArXiv e-prints, page arXiv:1606.03657, June 2016.

[15] Kai Huang and Hong Yan. Off-line signature verification based on geometric feature
extraction and neural network classification. Pattern Recognition, 30(1):9 — 17, 1997.

[16] R. Sabourin and J. . Drouhard. Off-line signature verification using directional pdf and
neural networks. In Proceedings., 11th IAPR International Conference on Pattern Recog-
nition. Vol.Il. Conference B: Pattern Recognition Methodology and Systems, pages 321—
325, Aug 1992.

[17] Mustafa Berkay Yilmaz and Berrin Yanikoglu. Score level fusion of classifiers in off-line
signature verification. Information Fusion, 32:109 — 119, 2016. SI Information Fusion
in Biometrics.

[18] L. G. Hafemann, R. Sabourin, and L. S. Oliveira. Writer-independent feature learning for
offline signature verification using deep convolutional neural networks. In 2016 Interna-
tional Joint Conference on Neural Networks (IJCNN), pages 2576-2583, July 2016.

[19] 1. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative Adversarial Networks. ArXiv e-prints, June
2014.

[20] Al Gharakhanian. Gans: One of the hottest topics in machine learning, 12 2016. [On-
line; accessed 1-November-2018] URL: https://www.linkedin.com/pulse/
gans—one—-hottest-topics—machine-learning—-al-gharakhanian/
?trk=pulse_spock—-articles.

[21] Yann Lecun, Bernhard Boser, John Denker, Don Henderson, R E. Howard, Wayne E. Hub-
bard, and Larry Jackel. Handwritten digit recognition with a back-propagation network.
Neural Information Processing Systems, 2:396—404, 01 1989.

[22] P. Y. Simard, D. Steinkraus, and J. C. Platt. Best practices for convolutional neural net-
works applied to visual document analysis. In Seventh International Conference on Doc-
ument Analysis and Recognition, 2003. Proceedings., pages 958-963, Aug 2003.

https://www.linkedin.com/pulse/gans-one-hottest-topics-machine-learning-al-gharakhanian/?trk=pulse_spock-articles
https://www.linkedin.com/pulse/gans-one-hottest-topics-machine-learning-al-gharakhanian/?trk=pulse_spock-articles
https://www.linkedin.com/pulse/gans-one-hottest-topics-machine-learning-al-gharakhanian/?trk=pulse_spock-articles

BIBLIOGRAPHY 39

[23] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE: Synthetic
Minority Over-sampling Technique. ArXiv e-prints, June 2011.

[24] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv 1409.1556, 09 2014.

[25] Kai Huang and Hong Yan. Off-line signature verification based on geometric feature
extraction and neural network classification. Pattern Recognition, 30(1):9 — 17, 1997.

[26] Ligian Ma, Xu Jia, Qianru Sun, Bernt Schiele, Tinne Tuytelaars, and Luc Van Gool. Pose
guided person image generation. In NIPS, 2017.

[27] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired Image-to-Image Translation using
Cycle-Consistent Adversarial Networks. ArXiv e-prints, March 2017.

[28] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Te-
jani, J. Totz, Z. Wang, and W. Shi. Photo-Realistic Single Image Super-Resolution Using
a Generative Adversarial Network. ArXiv e-prints, September 2016.

[29] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang,
and Dimitris Metaxas. Stackgan: Text to photo-realistic image synthesis with stacked
generative adversarial networks. In ICCV, 2017.

[30] F. Vargas, M. Ferrer, C. Travieso, and J. Alonso. Off-line handwritten signature gpds-
960 corpus. In Ninth International Conference on Document Analysis and Recognition
(ICDAR 2007), volume 2, pages 764-768, Sept 2007.

[31] Z. Wang and A. C. Bovik. Mean squared error: Love it or leave it? a new look at signal
fidelity measures. IEEE Signal Processing Magazine, 26(1):98—117, Jan 2009.

[32] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image Processing,
13(4):600-612, April 2004.

[33] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differ-
entiation in pytorch. In NIPS-W, 2017.

[34] Google. Google colaboratory. [Online; accessed 1-November-2018] URL: https://
colab.research.google.com/.

[35] Jonathan Hui. Gan cgan infogan (using labels to improve gan), 11 2018. [Online;
accessed 15-November-2018] URL: https://medium.com/@3jonathan_hui/
gan—-cgan—infogan-using—labels—-to-improve—-gan—8badde5f9c3d.

[36] matplotlib. color example code: colormaps reference, 1 2012. [Online;
accessed 14-December-2018] URL: https://matplotlib.org/examples/
color/colormaps_reference.html.

https://colab.research.google.com/
https://colab.research.google.com/
https://medium.com/@jonathan_hui/ gan-cgan-infogan-using-labels-to-improve-gan-8ba4de5f9c3d
https://medium.com/@jonathan_hui/ gan-cgan-infogan-using-labels-to-improve-gan-8ba4de5f9c3d
https://matplotlib.org/examples/color/colormaps_reference.html
https://matplotlib.org/examples/color/colormaps_reference.html

BIBLIOGRAPHY 40

[37] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 1-9, June 2015.

[38] M. Diaz, M. A. Ferrer, G. S. Eskander, and R. Sabourin. Generation of duplicated off-line
signature images for verification systems. [EEE Transactions on Pattern Analysis and
Machine Intelligence, 39(5):951-964, May 2017.

[39] Ligian Ma, Xu Jia, Qianru Sun, Bernt Schiele, Tinne Tuytelaars, and Luc Van Gool. Pose
guided person image generation. In NIPS, 2017.

This volume has been typeset in IATgXwith the UFPEThesis class (www.cin.ufpe.br/~paguso/ufpethesis).

www.cin.ufpe.br/~paguso/ufpethesis

	Introduction
	Background and Related Works
	Handwritten signature verification systems
	Generative adversarial networks
	Data augmentation
	Other related works

	Materials and Studied Methods
	Signature Corpus
	Tested models
	Preprocessing
	Model architectures
	Image analysis

	Experiments and Discussion
	Development Environment
	Preprocessing experiments
	Training the neural networks
	DCGAN
	CDCGAN
	InfoDCGAN
	Image Analysis

	Conclusions
	Limitations
	Future work

	appendix

