‘Centro i
wnformatica

EVALUATION OF MACHINE LEARNING ALGORITHMS IN THE
CATEGORIZATION OF ANDROID API METHODS INTO SOURCES AND SINKS

By
WALBER DE MACEDO RODRIGUES

B.Sc. Dissertation Proposal

444

IRTUS IMPALT,
LA]
Federal University of Pernambuco
secgrad@cin,ufpe.br

www.cin.ufpe._br/-secgrad

RECIFE/2018

Resumo

Um programa computa em dados sensiveis e nao sensiveis, esses dados seguem um fluxo
especifico indo de data sources para data sinks. O vazamento de dados acontece quando dados
sensiveis chegam sem autorizac@o em sinks, para prevenir isso, técnicas estaticas e dinamicas
de Flow Enforcement garantem que esses dados nao cheguem nessas sinks. Para isso, esses
métodos usam listas, geradas manualmente, de métodos que sejam sources sensiveis ou sinks, e
essa solucdo € impraticavel para grandes APIs como a do Android. Visto isso, uma abordagem
usando machine learning foi desenvolvida para classificar esses métodos sources e sinks. O
presente trabalho tem como objetivo criar um dataset para avaliar os métodos de classificacao

mais utilizados e decidir quais os mais apropriados para esse problema.

Abstract

A program computes in either sensitive and non-sensitive data and follows a specific flow, from
data sources to data sinks. Data leakage happens when sensitive data is sent to unauthorized data
sinks, to prevent that, Dynamic and Static Flow Enforcement techniques ensure that sensitive
data reaches those sinks. To prevent data leakage, these methods rely on a list of sensitive data
sources and data sinks, this list is hand annotated and is impractical to be made to a huge API
such as Android. With that in mind, a machine learning model is used to classify methods into
sources and sinks. The present work intends to extend the previous work creating a dataset to
evaluate the most used classification algorithms and define which is the most suitable to this

problem.

1

Introduction

Every program computes on either sensitive data or non-sensitive data. Sensitive is
any data that can be used to identify the user or any private user information, such as photos,
International Mobile Equipment Identity (IMEI) nd biometric data. Non-sensitive data is any
dynamic information that do not identify the user, oftenly this kind of information if public or
shared, such as application source code.

In an application, data follows a specific flow, first it is acquired from data sources
and sent to data sinks (MCCABE, 2003). Data sources, in the context of mobile and loT
devices, are defined as method calls that read data from shared resources such as phone calls,
screenshots, sensor polling data from ambient, device identification numbers (RASTHOFER;
ARZT; BODDEN, 2014). Data sinks are methods calls that have at least one argument, this
argument is non-constant data from the source code (RASTHOFER; ARZT; BODDEN, 2014).
The data sink can be an interface to the user or system API for communication to other devices
or store data (VIET TRIEM TONG; CLARK; ME, 2010).

Dynamic Flow Enforcement are techniques that tracks and enforces information flow
during the application runtime. These methods relies on Taint Analysis to track possible sensitive
data flow to untrusted sinks. Taint Analysis marks every sensitive data gathered from a source
and every other variable that inherit any operation from the tainted data, in the end, if any tainted
variable is accessed by a sink method, the information has leaked and the analysis gives a detailed
path through which the data passed. During the tracking, there are different methods to enforce
in runtime that the data will not leak, FERNANDES et al. (2016) uses virtualization to guarantee
that the data will only operate in the controlled environment and SUN et al. (2017) declassifying
information before it is computed in trusted methods or if reach a trusted APIL.

Static Flow Enforcement starts by creating abstract models of the application code to
provide a simpler representation (MYERS, 1999), using frameworks like Soot (VALLEE-RALI
et al., 2000). Then, this model will be used in control-flow, data-flow and points-to analysis to
observe the application control, data sequence and compute static abstractions for variables LI
et al. (2017). These methods are implemented and used in DroidSafe GORDON et al. (2015).
JFlow MYERS (1999) inserts statically checked and secured code when the application computes

on sensitive data.

Both Static and Dynamic Flow Enforcement techniques require information of which
methods is a source of sensitive data and which is a data sink. This is used to identify if a sink
method is truly leaking sensitive data or not. So, lists containing sources and sinks of sensitive
data are hand created, but this solution is impractical considering a huge API like the Android
API RASTHOFER; ARZT; BODDEN (2014).

Considering that issue, Rasthofer et al. RASTHOFER; ARZT; BODDEN (2014) pro-
posed to use machine learning to automatically create a categorized list of sources and sinks
methods to be used in Flow Enforcement techniques. The list consists in methods classified into
Flow Classes and Android Method Categories. The Flow Classes are source of sensitive data, or
just source, and sink of data, but also, the method can be neither source or sink. For Android
Methods Categories, there are 12 different classes: account, Bluetooth, browser, calendar, contact,
database, file, network, NFC, settings, sync, a unique identifier, and no category if the method
does not belong to any of the previous.

The authors shortly compared Decision Trees and Naive Bayes with the SVM and
choosed to use SVM to create the categorized list of sources and sinks, as SVM showed to be
more precise in categorize the Android methods.

To classify, the authors utilize features extracted from the methods, like the method
name, if the method has parameters, the return value type, parameter type, if the parameter is
an interface, method modifiers, class modifiers, class name, if the method returns a value from
another source method, if one parameter flows into a sink method, if a method parameters flows
into a abstract sink and the method required permission.

To categorize the methods, were used features like class name, method invocation, body
contents, parameter type and return value type. After that, the methods list is generated containing

if it is a sink, source and the method category.

2

Objectives

This work has two main objectives: generate a public database containing methods from
Android APIs and evaluate the performance of the most used classification algorithms on this
database. The methods should be classified into any of the two Flow Classes, source or sink, or
neither.

The motivation behind the database creation comes when RASTHOFER; ARZT; BOD-
DEN (2014) developed the initial classification work. Their objective were create a machine-
learning solution to identify sources and sink methods from the code of any Android API. So,
every time that you wanted to test other classification algorithms, you had to extract the methods
and features at every execution. Then, create a public database extract knowledge and develop
better solutions to this problem is very likely.

The objective of evaluate different classification algorithms comes as RASTHOFER;
ARZT; BODDEN (2014) shows results for only three classification algorithms, SVM, Decision
Tree and Naive Bayes. From that, emerged the question if other classification algorithms have
better results in this database. So, the second objective is to evaluate the most used classifiers in
the literature, SVM, Naive Bayes, Decision Trees, MLP, KNN, including ensemble classifications

methods.

3

Methodology

As first objective, the dataset will be created using the feature extractor developed by
RASTHOFER; ARZT; BODDEN (2014). The extractor creates meaningful information using
the Android methods names and their real implementation in the Android API. As result, the
extractor gives the method class, if has been hand annotaded, and a list of features. These features
are semantic and syntactic features, containing information about the method name, parameters,
return type, method and classes modifiers, class modifiers, if exists data flow in the method
return or parameters and the required permissions.

The extractor will be used in many Android APIs as possible, since there are a low
quantity of hand annotated methods, it is important to extract as many methods from classes as
possible. It is possible to have duplicated methods at the end of this evaluation due to backward
compatibility, so, methods from older APIs will be overwritten.

The methods used in the comparison will be SVM, Naive Bayes, Decision Trees, MLP,
KNN, and ensemble classifications methods, which will be evaluated in 30 datasets sampled from
the original. Each of these datasets are subdivided into train dataset and test dataset, containing
80% of the original dataset for model training and 20% for test the model effectivity. They
must maintain the classes proportion observed in the original dataset, if the original has 45%
of source methods, the train and test must have a proportion close to that. Create these datasets
are important to make a Hypothesis Test, this help to statically evaluate if a classifier is really

effective when applied in this dataset. The proposed evaluation flow is shown in figure 3.1.

TP TP
recison = ——— 3.1 recall = ———— 3.3
u TP+FP €A TP+FN)
TP+TN 2 X recall x precision
accuracy = .3.2 Fl = 34
Y TP+TN+FP+FN . recall + precision Q

Each classifier will be evaluated using precision, accuracy, recall and F1 score. The
precision, equation 3.1, is the ratio of correctly predictions to the total predictions done. Accuracy,
equation 3.2, is the ratio of correctly true predictions to the total of true predictions. Recall,
equation 3.3 is the ratio of correctly positive predictions to all the predictions of a class. FI,
equation 3.4, score represents the harmonic mean between precision and recall SASAKI et al.

(2007).

We can rewrite precision, accuracy, recall and F1 score in the equations above, using true
positives (TP), true negatives (TN), false positives (FP) and false negatives (FN). True positives
are all instances of a class C that are correctly classified. True negatives are all instances that do
not belong to C and are correctly classified. False positives of a class C are the instances of other
classes that has been classified as C. False negatives are instances of C that has been classified as

not belonging to C.

Android
Methods

| |
!

Feature extractor

Android APIs

Y

Dataset
Sampled Sampled N Sampled
Dataset 1 Dataset 2 Dataset 30
| | |
) 4
Classifiers
Y
Results

Figure 3.1: Overview of the proposed evaluation flow. First, the feature extractor uses Android
Methods and Android APIs to create a dataset, which will be sampled into other 30 different
datasets that will be used to evaluate the Classifiers.

<

Schedule

Literature Review

August

September

October

November

December

X

Dataset creation

X | X | X | X

Algorithm studies

Experiments

Evaluation

Writing

Presentation preparation

5

Possivel Avaliador

Paulo Salgado Gomes de Mattos Neto

10

11

References

FERNANDES, E. et al. FlowFence: practical data protection for emerging iot application
frameworks. In: USENIX SECURITY SYMPOSIUM. Anais... [S.l.: s.n.], 2016. p.531-548.

GORDON, M. I. et al. Information Flow Analysis of Android Applications in DroidSafe. In:
NDSS. Anais... [S.L: s.n.], 2015. v.15, p.110.

LI, L. et al. Static analysis of android apps: a systematic literature review. Information and
Software Technology, [S.1.], v.88, p.67-95, 2017.

MCCABE, J. D. Network Analysis, Architecture and Design, Second Edition (The
Morgan Kaufmann Series in Networking). [S.1.]: Morgan Kaufmann, 2003.

MYERS, A. C. JFlow: practical mostly-static information flow control. In: ACM
SIGPLAN-SIGACT SYMPOSIUM ON PRINCIPLES OF PROGRAMMING LANGUAGES,
26. Proceedings... [S.I1.: s.n.], 1999, p.228-241.

RASTHOFER, S.; ARZT, S.; BODDEN, E. A Machine-learning Approach for Classifying and
Categorizing Android Sources and Sinks. In: NETWORK AND DISTRIBUTED SYSTEM
SECURITY SYMPOSIUM NDSS. Anais... [S.l.: s.n.], 2014.

SASAKI, Y. et al. The truth of the F-measure. Teach Tutor mater, [S.1.], v.1, n.5, p.1-5, 2007.

SUN, C. et al. Data-Oriented Instrumentation against Information Leakages of Android
Applications. In: IEEE 41ST ANNUAL COMPUTER SOFTWARE AND APPLICATIONS
CONFERENCE (COMPSAC), 2017. Anais... [S.l.: s.n.], 2017. p.485-490.

VALLEE-RAL R. et al. Optimizing Java bytecode using the Soot framework: is it feasible? In:
INTERNATIONAL CONFERENCE ON COMPILER CONSTRUCTION. Anais... [S.L.: s.n.],
2000. p.18-34.

VIET TRIEM TONG, V.; CLARK, A. J.;: ME, L. Specifying and enforcing a fine-grained
information flow policy: model and experiments. Journal of Wireless Mobile Networks,
Ubiquitous Computing, and Dependable Applications, [S.I.], v.1, n.1, p.56-71, 2010.

