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1 Introduction

Computer programs need random numbers for many purposes: statistical testing,
machine learning, gaming, algorithms, and cryptography are some of these. The task
of procuring random numbers is left to a class of algorithms called Pseudorandom
Number Generators (PRNGs). These produce apparently random numbers — yet
in fact, they are completely deterministic.

To ease the work of programmers, most languages come imbued with a default
PRNG implementation — a quick, easy-to-use generator, which produces numbers
of randomness with sufficient quality for general applications. These are a good fit
for most situations where random numbers are needed. However, special care must
be taken wherever security mingles.

Most PRNGs are insecure, and the numbers they produce can often be predicted
by a resourceful outside observer. This is not a problem for most use cases, but in
some it is a disaster. For example, if a website generates authentication cookies with
an insecure PRNG, a malicious user might be able to impersonate another.

A class called Cryptographically Secure PRNGs (CSPRNGs) is available for such
scenarios, as these are designed to offer strong guarantees of unpredictability. But
software development may take place under tight time constraints, and security is
often sidelined in favour of other concerns. Thus it is commonplace for PRNGs to
be found in use in places where they should not.

1.1 Motivation and Objectives

In this work, we set our sights upon System.Random, the default PRNG for
the C# programming language. This generator is insecure, and a trivial prediction
method is known for its conventional use case. We aim at another use case, unortho-
dox yet popular, which we call our target use case. A search on github returns
tens of thousands of results for this mode of use in public repositories [1]. We have
verified that at least some of these take place in security-critical contexts. Nonethe-
less the target use case has remained unstudied — there is no known algorithm
capable of performing its prediction.

The aim of our research is to fill in this gap: to analyse System.Random so as to
present a prediction method for the target use case. We seek to develop a predictor
tool implementing our findings — a System.Random prediction tool attacking the
target use case. Finally, we intend to test this tool and show our results so as to
verify our methods.
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1.2 Results

We introduce the NRN(seed) formula (Lemma 1), which describes the number
produced by new Random(seed).Next(). We combine this with C#’s default
seed selection schemes to introduce prediction methods for the target use case, i.e.
new Random().Next(). Prediction is deterministic and unerring if the target
generator runs on .NET Core, .NET 5, or Mono; and of varying accuracy if it runs
on .NET Framework, depending on the quality of timing information available.

1.3 Document Overview

Excluding introduction and conclusion, our work is organised into four major sec-
tions:

� Section 2: an overview of pseudorandom number generation in general;

� Section 3: an overview of the target generator, System.Random;

� Section 4: an explanation of our methods to predict the target use case;

� Section 5: an introduction and test results for our prediction tool.

6



2 Pseudorandom Number Generators

Anyone who attempts to
generate random numbers by
deterministic means is, of
course, living in a state of sin.

John von Neumann [2]

In this section, we cover the fundamentals of pseudorandom number generators:
what they are, why they are necessary, what they aim to accomplish, how they
operate in a general sense, and how one might evaluate a generator’s quality for a
certain application domain.

2.1 On the General Workings and Quality of a Generator

As suggests Neumann, it is an oxymoron to produce truly random numbers by
deterministic means alone. However, it is possible to produce merely apparent
randomness: numbers which might seem not to follow any obvious pattern, dis-
tributed in a uniform fashion. These are known as pseudorandom numbers,
and algorithms designed to produce such numbers are called pseudorandom number
generators (PRNGs).

To this end, PRNGs make use of simple bitwise or modular arithmetic operations,
chosen carefully so that their output appears independent from their input - ergo
random. Their algorithms thus seek to produce apparent randomness by repeated
applications of these operations.

Implementation-wise, some internal state s is held and operated over, either a
single integer or an array of integers. Initial values for this state are derived from a
single seed integer as f(seed). To generate a number, the internal state is modified
with s← g(s), applying the operations described in the previous paragraph. Finally,
a number is derived from the new state as h(s) and returned. Figure 1 illustrates
this scheme.
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Initialize state with s = f(seed)

When a new number is needed,
set s = g(s) and output h(s)

When no more numbers are needed,
dispose of the generator

End

Start

Figure 1: The basic, general operation of a PRNG

These algorithms are often implementations of mathematically defined recursive
sequences. For instance, the linear congruential generator (LCG), a historically
popular and well-studied PRNG [3], is defined by the sequence in Equation (1).

si+1 = (si ∗ a+ b) mod m (1)

Different values for the constants a, b, and m define different instances of this
generator; and s0 is taken from the seed value to initiate the sequence.

In the literature, a generator’s quality is most often argued for by a mathematical
analysis of its sequence. A key property of a generator is its period length, meaning
how many numbers are output before a PRNG’s sequence begins to repeat itself.
Too short a period implies insufficient randomness for a majority of applications,
since a short and repeating cycle is wholly unconvincing.

Every PRNG must have some finite period length. As they base their algo-
rithm off of some finite internal state, it follows that unlimited applications of g will
eventually lead to some already-seen state configuration. From there, the generator
proceeds to repeat itself, as shown in Figure 2.
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Start
s = s

s = s

s = g(s)
output h(s)

0
1

... s = sp

s = g(s)
output h(s)

Figure 2: A generator with period p, as g(sp) = s0

A decent PRNG should have a large period. It has been shown [4] that an LCG
with well-chosen constants a, b, and m has a period of m; often 232, as this is a
convenient number for modular arithmetic. The more recent Mersenne Twister [5]
has a gargantuan period length of 219937−1. System.Random’s period is of unknown
length — see 3.1 for more details.

Another attempt to discern the quality of PRNGs is to perform statistical tests
on their output. These are designed to attempt to differentiate pseudorandom se-
quences from truly random numbers, employing a range of statistical tools to this
end. A couple of popular programs that group, run, and report the results of many
such tests are DIEHARD [6] and TESTU01 [7]. A generator is said to pass if these
tests fail to distinguish their output from a truly random stream of numbers.

2.2 Cryptographic Security

Cryptography oft needs random numbers - keys, nonces, salts, and padding data are
expected to be randomly generated. In cryptography the idea of apparent random-
ness is insufficient. Instead, generated numbers must be realistically unpredictable
to an attacker; lest a key be leaked by an exploit targeting key generation, and thus
an encryption broken. Typical PRNGs fail this requirement, and many are trivially
predictable.

To attain unpredictability, truly random numbers would be ideal. Our best
efforts towards this consist in measuring verily unpredictable physical phenomena,
e.g. cosmic background radiation [8] or quantum events [9]. Even these may yet
be argued philosophically to not be truly random, but they are at least humanly
unpredictable, and therefore sufficient for cryptographic purposes.

Of course, most machines cannot use such expensive sources of randomness. In-
stead, they collect entropy from simpler phenomena, such as thermal noise [10],
which are still unpredictable to an attacker. This task is often left to special
hardware dedicated to this purpose, termed Hardware Random Number Genera-
tors (HRNGs) or True Random Number Generators (TRNGs). For example,
the x64 ISA offers the RDSEED instruction [11], which on supported CPUs will
provide a number sourced from a TRNG.

A key caveat of TRNGs is their slowness — they are often unable to provide ran-
dom numbers at a fast enough rate to satisfy the needs of modern applications. This
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is because even with simpler sources, entropy collection is still slow and expensive.
Thus despite providing excellent randomness, TRNGs do not suffice by themselves.

Cryptographically Secure Pseudorandom Number Generators (CSPRNGs) step
in to solve this performance issue. These are a subset of PRNGs, operating with
the same concepts of seed and state, and are again deterministic algorithms which
produce merely apparently random numbers. As such, they need not wait for entropy
collection, and can produce many numbers as quickly as they can be ran.

However, to be deemed secure and suitable for cryptographic purposes, CSPRNGs
are subject to great scrutiny [12, 13]. Within polynomial computational time, their
output must be indistinguishable from a stream of truly random numbers, and an
attacker must be unable to predict any future output by observing previous output.
The latter is often extended to the reverse, so that any past output may also not be
inferred by observing later output.

To meet these requirements, CSPRNGs must first pass all known statistical
tests. The NIST Statistical Test Suite (STS) [14] was created for this purpose —
it is necessary for any CSPRNG to pass these tests; however, this alone is not
sufficient. As the NIST STS authors themselves posit, only cryptanalysis provides a
strong guarantee of a CSPRNG’s security. This means a generator’s algorithm must
be either proven to be unpredictable in polynomial time, or withstand all attempts
by cryptanalysts to find polynomial-time attacks against its generation.

If a PRNG meets these requirements, it is deemed sufficient for cryptographic
purposes - a CSPRNG. Although the numbers produced from this class of gener-
ators are not nigh impossible to predict, as are numbers from a TRNG, they are
unpredictable in polynomial time.

CSPRNGs are seeded by the output of a TRNG, so that their seed is itself
also secure - for if the seed were compromised, so too would the generator itself.
Furthermore, they are periodically re-seeded, again with a TRNG. This means that
even if an attack cracks a CSPRNG, this will not last for long, as it will soon
refresh its state with new entropy. Figure 3 outlines the entire generation process
for CSPRNGs.
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TRNG

Physical entropy

CSPRNG

Pseudorandom numbers safe
for cryptographic purposes

Is gathered by

Seeds and re-seeds

Generates

Figure 3: A summary of how cryptographically secure numbers are generated.

Although this class of generators is eponymously built with cryptography in
mind, their design is such that they befit any use case wherein security is involved.
For instance, a CSPRNG could safely be used to generate secret passcodes for a two-
factor authentication mechanism. If instead a typical PRNG were used for such a
mechanism, it would be left unsafe and open to prediction attacks and exploitation.

2.3 Conclusion

We describe the motivation for PRNGs, their basic operation, and how they may
be graded as to the quality of their generation. We furthermore offer an overview of
the motivation and overall operation behind CSPRNGs, and what standards they
must meet in order to suit their intended purposes.

11



3 System.Random

The Random class, defined in the System namespace in C#, is this language’s
default PRNG. In this section, we first provide an overview of this generator; next,
we explain how its output can be predicted. Finally, we introduce an unconventional
mode of use, the target use case mentioned in 1.1, which drives this work.

3.1 Technical Overview

System.Random is a general-purpose PRNG, intended for end-user programmers.
As such, its design focuses on ease-of-use and computationally inexpensive genera-
tion, yet maintaining enough randomness quality for generic usage.

To use this generator, programmers are expected to create and store an in-
stance thereof by calling one of its constructors, and subsequently call its number-
generating public methods according to their needs. We present below a list of these
constructors and methods and a brief description for each.

� new Random(int seed): Initialises an instance with the specified seed.

� new Random(): Initialises an instance with a default seed value.

� int Next(): Returns an integer in [0, 232 − 1[.

� int Next(int maxValue): Returns an integer in [0,maxValue[.

� int Next(int minValue, int maxValue):
Returns an integer in[minValue,maxValue[.

� double NextDouble(): Returns a double in [0, 1[.

� void NextBytes(byte[] buffer): Fills buffer with random bytes.

� void NextBytes(Span<byte> buffer): Fills buffer with random bytes.

Internally, all these methods source their randomness from a single private
method InternalSample(). This method returns an integer in [0, 232 − 1[, and
modifies the generator’s internal state. We present another list below, describing
how each public method uses the values returned by InternalSample to implement
its desired behaviour.

� int Next(): Returns the value produced by InternalSample() with no alter-
ations.

� int Next(int maxValue): Returns
⌊maxV alue · InternalSample()÷ (232 − 1)⌋

� int Next(int minValue, int maxValue): Returns
⌊minV alue+ (maxV alue−minV alue) · InternalSample()÷ (232 − 1)⌋
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� double NextDouble(): Returns InternalSample()÷ (232 − 1)

� void NextBytes(byte[] buffer): For each byte b in buffer, overwrites b with the
8 least significant bits of InternalSample(). Note that InternalSample() will
be called a total of n times if buffer has n bytes.

� void NextBytes(Span<byte> buffer): Same as above.

The InternalSample() method is responsible for implementing System.Random’s
underlying PRNG algorithm. Its behaviour is such that for any single instance of
System.Random, its nth call to InternalSample() will produce the (n+55)th call of
the sequence described in Equation (2).

Xi = (Xi−55 −Xi−24) mod m, m = 232 − 1 (2)

With (X0, ..., X54) derived from the seed value during initialization

This is called a Lagged Fibonacci Sequence, and a PRNG following such a se-
quence is a Lagged Fibonacci Generator (LFG). The numbers 55 and 24 are called
its lags, and are of key relevance for the quality of its generation.

This version of the sequence with these lags was first studied as a candidate for
PRNG algorithms by Mitchell and Moore [15], in an unpublished work known to
us via Knuth [3]. They found that it features the desirable property of a very long
period, if m is well-chosen. A period of at least 255 − 1 would be guaranteed if m
were even, with a better yet guarantee of (255−1) ·2e−1 if m = 2e. However, no such
guarantees are present for System.Random due to its writers’ unfortunate choice of
the odd number m = 232 − 1.

Nevertheless, a 2020 publication by Hegadi and Patil [16] found good results
for this PRNG in the NIST Statistical Test Suite [14] when compared to default
generators from other languages, suggesting that despite the poor choice of m, Sys-
tem.Random is still a decent source for pseudo-randomness. Furthermore, various
works [17, 18, 19] describe the implementation, in C#, of algorithms requiring some
randomness. The authors do not explicitly specify how they produced this random-
ness, but it is reasonable to assume that it was sourced from System.Random, and
that its generation was considered to be of sufficient quality.

Microsoft’s code for this class was heavily inspired by Numerical Recipes in
C [20], itself inspired by Knuth [3]. In the former, the authors include a sam-
ple implementation of the sequence in Equation (2) in the C programming lan-
guage. We present a pseudocode algorithm mostly equivalent to this book’s and
System.Random’s implementations in Algorithm 1.
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Algorithm 1 System.Random equivalent pseudocode

1: procedure init ▷ Initialise the generator...
2: X ← [X0, X1, ..., X54] ▷ ...with the first 55 values of (2)
3: i← 0
4: j ← 21
5: end procedure
6: procedure sample ▷ Returns the next number of the sequence
7: X[i]← (X[i]−X[j]) mod (232 − 1)
8: x← X[i]
9: i← (i+ 1) mod 55

10: j ← (j + 1) mod 55
11: return x
12: end procedure

In summary, this algorithm stores Xn−1, ..., Xn−55 in an array of 55 integers.
When the SAMPLE procedure is called, it computesXn asXn−55−xn−24, which are
stored in the array at X[i] and X[j], respectively. Then, it overwrites X[i] = Xn−55

with Xn; as the former will no longer be needed to compute any further elements in
the sequence. Finally, Xn is returned.

This pseudocode will not output X0 through X54. Rather, the first call to
SAMPLE will return X55, the second will return X56, and so on — this matches
System.Random’s behaviour. Also, we omit how the initial values X0, X1, ..., X54

are chosen — they are derived from a single integer seed value, in a process we will
later detail in 4.1.

Furthermore, System.Random is not a thread-safe PRNG. This means that if
distinct threads were to call the InternalSample() method of one same instance at
the same time, undefined behaviour may take place.

Although at a glance this may seem desirable (what could be more random
than undefined behaviour?), this can also backfire and leave its internal state stuck
in an undesirable configuration, leading to a catastrophic drop in the quality of
its randomness. To quote Coveyou, “Random number generation is too important
to be left to chance” ([21]). Thus, programmers who wish to use this class in a
multithreaded context must take care to enforce its safe access.

3.2 Predicting the Common Case

Again, System.Random is not a CSPRNG. As C#’s default PRNG, its focus lies in
general-purpose applications, where security is not a concern. We now show how an
attacker may exploit its algorithm so as to predict its output.

We assume the attacker may observe as many samples as needed output by an
instance of the target generator. Recall that in the SAMPLE procedure in algorithm
1, each sample is output by the generator and its value is then stored back into the
its state array X. This means that by observing 55 consecutive samples, as in Figure
4, we will learn the entirety of the algorithm’s internal state. Therewith, the target
generator can be simply copied, i.e. by calling procedure INIT in Algorithm 1 and
setting X ← [S0, S1, ..., S54]. The copy’s output will then be identical to the target’s.

14



Target generator's state array

X X X...1 2 55

Attacker's copy

S S S...1 2 55

Figure 4: Capturing 55 samples, the attacker copies the target generator

This prediction method is trivial, as it follows immediately from System.Ran-
dom’s algorithm. It is a state attack, because its central theme is to uncover and
reproduce the target generator’s internal state to then imitate its behaviour.

Although it has not been discussed in any formal literature, many blog posts and
forums around the web have described and demonstrated this attack. Furthermore,
Krawczyk [22] and Boyar [23] circa 1990 published prediction methods targeting a
very large class of PRNG algorithms, which happens to include System.Random.
These authors’ methods are less efficient than the attack described above, as they
make less assumptions about their target generators — whereas their prediction
might make a polynomial amount of mistakes, the method above makes none.

Prediction methods for all other number-generating System.Random methods
(e.g. NextFloat()) may be derived from this attack; because all methods derive
their generation from InternalSample(), and the Next() method simply returns a
raw value from InternalSample(). We maintain this idea throughout our work, and
describe only the prediction of the Next() method.

15



3.3 The Target Case

The previous subsection describes an attack against the common use case of Sys-
tem.Random, the way its authors meant for it to be used. In this subsection, we
describe a different and somewhat improper use case which happens to escape that
attack. This is our work’s target use case.

Those who intend to use System.Random are expected to create and store a
single instance of the class, and call number-generating methods from there. An
alternative is to initialise and call a method from a whole new instance whenever a
number is needed — this is condensed into the code new Random().Next().

Re-initializing a generator for every number needed seems to only add unneces-
sary complexity, so why would a programmer opt to do this? The best advantage
offered by this artifice is that it can lead to simpler code. To demonstrate this, we
present a SimpleRandom static class, which handles System.Random’s construction
and wraps calls to its Next() method. We show two implementations of this class:
the first of which uses a single instance of System.Random, and the second of which
creates a new instance for each number that must be generated.

16



Listing 1: SimpleRandom - common case version

static class SimpleRandom
{

private static Random r = new Random();

public static int NextWrapper()
{

return r.Next();
}

}

Listing 2: SimpleRandom - target case version

static class SimpleRandom
{

public static int NextWrapper()
{

return new Random().Next();
}

}

Despite the underlying complexity present in constructing a new System.Ran-
dom instance for every call to NextWrapper() in Listing 2, its code is arguably
simpler. Furthermore, recall from 3.1 that System.Random is not thread-safe. C#
does provide a variety of threading tools which could be applied to Listing 1 so
as to make its version of the NextWrapper() method thread-safe, at the cost of
some extra code complexity. However, Listing 2 is already thread-safe, as distinct
threads calling of NextWrapper() will each create their own distinct instance of
System.Random.

But using the class in this manner has consequences. Whereas the numbers
produced by calls to NextWrapper() in listing 1 will as expected follow sequence 2,
the same does not hold for listing 2 — which instead follows a sequence determined
by how the instances are initialised, and how their seeds are chosen.

Thus, our target case is this: a program which generates pseudorandom
numbers using System.Random, by calling new Random().Next(). To
elucidate its relevance, we ran a github code search for ”new Random().Next”, and
found tens of thousand results [1]. This suggests the target use case is not at all
uncommon, and indeed the simplicity of its code is attractive to many programmers.

3.4 Conclusion

We cover a programmer’s view of System.Random, and its underlying algorithm
as a subtractive generator. We show how to predict the class’s common use case
through a state attack, and introduce and justify the target use case - where each
time a number is needed, a new instance is created, taking only the first number it
generates.
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4 Predicting the Target Case

In this section, we analyse numbers generated by the target use case, as described
in 3.3 and therein exemplified by Listing 2. We then leverage our findings to de-
scribe algorithms capable of predicting the target case. Furthermore, we consider
what impediments a real-world prediction scenario might present, and adapt our
algorithms to these.

Most or all of the analysis presented in this section was obtained by reading the
source code [24, 25] and experimenting with System.Random. To the best of our
knowledge, it is a novelty.

4.1 Problem Statement and Initialization Analysis

To predict the target use case as we have described is to predict the value of the
following C# expression:

new Random().Next()

This expression does two things:

1. new Random(): Initialise a new instance of System.Random with a default
seed value, selected by the executing .NET environment;

2. .Next(): Get the first number generated by this instance.

We will first look into what number is generated by new Random(s).Next(), for a
known seed s. The initial state X ← [X0, ..., X54] is derived from s by an algorithm
introduced by a C implementation included in Numerical Recipes in C [20]. This
was later translated to C# from C and placed into System.Random’s code.

This algorithm is very convoluted, to a degree that impedes straightforward
analysis. We encourage readers interested in its details to consult either the Sys-
tem.Random source code [24, 25] or Numerical Recipes in C [20]. In the book, the
authors leave a comment regarding their code:

Now initialise the rest of the table, in a slightly random order, with num-
bers that are not especially random. [20]

Thus the authors were aware their complicated code might regardless display
regular behaviour, as indeed it does. If given a seed s, this algorithm always produces
an initial state X ← [X0, ..., X54] such that:

X55 = a · |s|+ b mod m

With constants a, b,m :

a = 1121899819

b = 1559595546

m = 232 − 1

Recall that the first call to Next() from a new instance of System.Random re-
turns X55. We will hereafter refer to this as NRN (s), an acronym for new Ran-
dom(s).Next():
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Lemma 1.

NRN(s) = new Random(s).Next() = a · |s|+ b mod m

With constants a, b,m :

a = 1121899819

b = 1559595546

m = 232 − 1

Proof. The proof proceeds by brute force. In Appendix B, we show the source code
for a C# program which proves that NRN (s) = new Random(s).Next() for every
32-bit integer except −(232).

To the best of our knowledge, we are the first to report on it this behaviour. It
is accidental — no code overtly computing equation (1) nor either values a or b are
present in the source code. We instead found these by observing the return of calls
to new Random(s).Next() for incrementing values of s.

Similar formulae exist for X56, X57, and so on. These differ from equation (1)
only by switching constants a and b for other values. As an example, we show below
a formula for X56:

X56 = a′ · |s|+ b′ mod m

With constants a′, b′,m :

a′ = 1755192844

b′ = 1517371964

m = 232 − 1

Appendix A lists such values for X55, X56, ..., X109. The code in Appendix B can
be modified to verify each of these. With equations for these 55 numbers of the
sequence as a starting point, any Xn may then be found through equation (2).

Although our analysis and prediction target X55, the first number output by a
System.Random instance; since similar formulae exist for everyXn, our work may be
converted to target any Xn, or equivalently any i-th output from System.Random.

4.1.1 Seed Selection and .NET Environments

Next, we look into how the seed value is chosen. Again, when calling new Ran-
dom().Next(), the constructor with no arguments means that the seed s will be
selected by the .NET environment itself. This is done in one of two ways:

1. On all versions of .NET Framework, s← Environment.TickCount. This
is a C# variable which references the environment’s system time, as measured
in milliseconds;

2. on Mono, .NET 5 and all versions of .NET Core, seed values are pseudo-
randomly generated by internal static instances of System.Random itself.
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These are both commonplace patterns. For instance, Java’s default PRNG class
combines both techniques in its default seed selection [26]. We will inspect and
propose prediction algorithms based on each .NET seed selection method in turn.

4.2 .NET Framework

4.2.1 Effecting a Prediction

According to its documentation, Environment.TickCount is a 32-bit signed integer
referencing its machine’s system timer, counting the amount of milliseconds elapsed
since system startup. Its resolution thus depends on the system timer’s, typically
around 10 to 16 ms. If the system stays up for long enough (circa 25 days), this
counter can overflow past its maximum value and into the negatives.

The most obvious attack route is to find the target machine’s system timer’s value
st at the time of sample generation — the sample’s value could then be calculated as
NRN (st). However, we present an alternative wherein only the difference between
st and another sample’s seed must be found.

Let there be a target sample with unknown value nt, generated with a seed
st; and a base sample with value nb generated with seed sb. Thus NRN (st) = nt

and NRN (sb) = nb. Assume that only the values of nb and the seed difference
∆s = st − sb are known, but both st or sb themselves are unknown. By Lemma 2,
nb and ∆s are sufficient to calculate the value of nt.

Lemma 2. nt = nb + k · a ·∆s mod m

With a,m, k :

a = 1121899819

m = 232 − 1

k = sgn(sb) = sgn(st)

Proof.

nb + k · a(∆s) mod m

= nb + k · a(st − sb) mod m

= NRN (sb) + k · a(st − sb) mod m

= (a · |sb|+ b) + k · a(st − sb) mod m [Lemma 1]

= (a · sgn(sb) · sb + b) + k · a(st − sb) mod m [Lemma 1]

= (a · k · sb) + k · a(st − sb) + b mod m

= (a · k · sb) + k · a · st − (k · a · sb) + b mod m

= k · a · (st) + b mod m

= NRN (st) [Lemma 1]

= nt
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This proof applies only if sgn(sb) = sgn(st). A negligible restriction, since Envi-
ronment.TickCount only changes sign once every 25 days. Nevertheless, care must
be taken if the target and base samples were generated at very distant times.

Also, the attacker knows not whether k = 1 or k = −1. There are two ways to
handle this — one is to calculate nb + k · a(∆s) mod m twice, once for each value
of k. One of these will necessarily result in the correct value for nt.

Alternatively, suppose the attacker has access to one extra base sample with
known value n′

b and seed difference ∆s′ = s′b− sb. Then the correct value for k may
be discerned, as calculating nb+ k · a(∆s′) mod m will yield exactly n′

b only for the
correct value of k. Again, since Environment.TickCount changes sign infrequently,
it the same k can be assumed to hold for the target sample.

Finally, the largest difficulty is to actually find ∆s. The attacker may approxi-
mate this value if time measurements tt and tb are available respectively for when
nt and nb were generated: tt − tb = ∆t ≈ ∆s. Herein lies this method’s advantage
over attempts to uncover st itself — the time measurements tt and tb need not be
performed by the target machine’s system timer, thus it needs not be compromised.

Yet ∆t is only an approximation for ∆s, since Environment.TickCount is itself an
inaccurate, low-resolution clock. Thus, we must consider various candidate values
for nt, with nb + k · a(∆t+ ϵ) mod m), using all integer values e ≤ ϵ ≤ e with e as
the maximum relative error between the system timer and the clock responsible for
∆t. The correct value for nt is guaranteed to be among these candidates, and the
attacker needs only test each of them to find it.

4.2.2 Practical Hindrance: Lag

Consider a PRNG attack scenario where the attacker sends HTTP requests over
the internet to a server, which is programmed to generate a number with new Ran-
dom().Next() upon receiving such requests. We shall analyse this context and show
how ∆s may best be approximated therein.

Let reqi be the time at which a request was sent, ni be the pseudorandom number
generated, and resi be the time at which the corresponding response was received.
In this scenario, the attacker is no longer privy to the exact time measurements tb
and tt. Rather, he knows for sure only that reqb ≤ tb ≤ resb and reqt ≤ tt ≤ rest.
Even still, the attacker may compute bounds for all possible candidates for ∆s.

Lemma 3. reqt − resb − e ≤ ∆s ≤ rest − reqb + e

Proof. Since all valid candidates for tt and tb fall within [reqt, rest] and [reqt, rest]
respectively, tt− tb = ∆t must be in [reqt−resb, rest−reqb]. Recall that all possible
values for ∆s are in [∆t−e,∆t+e]. Then ∆s is in [reqt−resb−e, rest−reqb+e].

This range for ∆s can be visualised in Figure 5: its correct value is guaranteed
to fall somewhere in [a−e, b+e]. This interval can include hundreds of options, and
thus incurs a severe penalty to the prediction’s accuracy.
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req res req resb b t t

a

b

Figure 5: Two example requests for pseudorandom numbers

Some combinations for reqi, resi and ti are likelier than others. It is in the
attacker’s best interests to make an effort to take this into account, so as to estimate
the likeliest values for ∆s. The attacker would then prioritise these, e.g. by testing
them for correctness first. This minimizes the inaccuracy introduced by the large
range for ∆s.

We consider that absent any further information, the most likely correct value
for ti is

1
2
(resi+reqi), with probabilities dropping proportionally as candidate values

become more distant. Figure 6 illustrates this idea. We base this off an assumption
that both request and response use the same network link, and thus take similar
amounts of time to reach their respective targets.

req resi i

x

P(ti = x)

req i res i+
2

Figure 6: A possible distribution of candidate values for ti.

4.2.3 Alternative Vectors

A few simpler alternatives to this attack are available — if the target server presents
one of a few properties that cannot be affirmed generally. These would need to be
verified, analysed and exploited in a case-by-case basis.

If the server happens to leak some time measurement performed server-side, this
may be used by the attacker as a precise measurement for the time at which a
request was processed by the server. This gives an exact value for ti, thus dispenses
with the need to manipulate reqi and resi. If the time measurements come from the
system timer itself, all complications can be skipped by computing NRN (st).

A synchronous generation attack is available if the server can be induced to
generate the base and target samples at nearly the same time. If the system timer
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does not change value between them, then these two samples will share the exact
same value.

4.3 .NET Core and Others

4.3.1 Effecting a Prediction

In all .NET environments besides .NET Framework, the default seed selection for
System.Random is performed by internal, static instances of System.Random itself.
These are two: s globalRandom and t threadRandom.

s globalRandom is a single, global instance of System.Random. A program will
only initialise it once, and it is seeded with the output of a CSPRNG. t threadRandom
is initialised once per thread — it is thread-static, meaning each thread will use its
own separate instance of t threadRandom. Each thread’s instance is seeded by a
call to s globalRandom.Next(). Finally, each call to new Random() will be seeded
by a call to its thread’s t threadRandom.Next().

To summarise: each call to new Random() is seeded by its thread’s t threadRan-
dom, which is seeded by the program-wide s globalRandom, which is seeded by a
CSPRNG. Figure 7 illustrates this process.
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CSPRNG

s_globalRandom

new Random()

t_threadRandom t_threadRandom t_threadRandom

new Random() new Random()

Thread 1 Thread 2 Thread 3

Figure 7: The hierarchy for .NET Core seed selection

Access to t threadRandom and s globalRandom is controlled to be thread-safe.
As this scheme’s behaviour depends on how the target application makes use of

threads, we describe how a prediction attack against the target use case may be
performed in two different threading scenarios.
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4.3.1.1 The Single-Threaded Case

Suppose all relevant calls to new Random().Next() take place on a single thread.
Thus, a single instance is responsible for seeding all calls to new Random().

Of course, t threadRandom is itself an instance of System.Random, and as such
would be vulnerable to the common case attack as described in 3.2. However, the
attacker cannot observe t threadRandom’s raw output. As illustrates Figure 8, each
Ti generated by this instance is consumed by new Random().Next(), and the attacker
may only observe NRN (Ti).

new Random().Next()t_threadRandom
Ti

NRN(Ti)

Figure 8: Only NRN (Ti) can be observed by the attacker - Ti is never revealed.

But a property ofNRN opens an alternative prediction method. SupposeNRN (Ti−55)
and NRN (Ti−24) are observed. Note that per System.Random’s generating sequence
(2), Ti = Ti−55 − Ti−24 mod m.

Lemma 4. NRN(Ti) = NRN(Ti−55)− NRN(Ti−24) + b mod m

With constants b,m :

b = 1559595546

m = 232 − 1

Proof.

NRN (Ti−55)− NRN (Ti−24) + b mod m

= a · Ti−55 + b− (a · Ti−24 + b) + b mod m [Lemma 1]

= a · Ti−55 + b− a · Ti−24 − b+ b mod m

= a · (Ti−55 − Ti−24) + b mod m

= a · (Ti) + b mod m

= NRN (Ti) [Lemma 1]
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T0

T1

...

T54

NRN(T0)

...

NRN(T1)

NRN(T54)

new Random().Next()

new Random().Next()

new Random().Next()

t_threadRandom's output Attacker's observed samples

Figure 9: 55 consecutive values for NRN(Ti) are sufficient to mount an attack

An attack backed by Lemma 4 looks much like the common case attack as in
3.2. The attacker would observe 55 consecutive samples, which represent NRN (T0)
through NRN (T54), as in Figure 9. Therewith, all future and past output NRN (Ti)
can be calculated with NRN (Ti) = NRN (Ti−55)− NRN (Ti−24) + b mod m; as per
Lemma 4.

4.3.1.2 The Always-New Case

Suppose the polar opposite of the single-threaded case: all relevant calls to new
Random().Next() now take place on a new thread. In this case, each thread will
only make a single call to new Random().Next(). Thus each thread will consume
one number generated by s globalRandom to seed its t threadRandom, and grab
only the first number generated by the latter to finally seed new Random().

Suppose a seed value si is produced by s globalRandom. Then this usage of
t threadRandom is equivalent to a call to new Random(si).Next() — creating a
new instance seeded with si and grabbing only its first output. Thus the pro-
grammer’s call to new Random() is seeded with NRN (si), and the output of new
Random().Next() will be NRN (NRN (si)), as shown in Figure 10.
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S0

S1

...

S54

...

new Random().Next()

s_globalRandom Attacker's observed samples

thread t0 t_threadRandom NRN(S0)

new Random().Next()t_threadRandom NRN(S1)

new Random().Next()t_threadRandom NRN(S54)

thread t1

thread t54

NRN(NRN(S0))

NRN(NRN(S1))

NRN(NRN(S54))

Figure 10: In the always-new case, the attacker observes NRN(NRN(Si))

Lemma 5.
NRN(NRN(Si)) = NRN(NRN(Si−55))− NRN(NRN(Si−24)) + a · b+ b mod m

With constants a, b,m, k :

a = 1121899819

b = 1559595546

m = 232 − 1

k = sgn(sb) = sgn(st)

Proof.

NRN (NRN (Si−55))− NRN (NRN (Si−24)) + a · b+ b mod m

= a · NRN (Si−55) + b− (a · NRN (Si−24) + b) + a · b+ b mod m [Lemma 1]

= a · NRN (Si−55) + b− a · NRN (Si−24)− b+ a · b+ b mod m

= a · (NRN (Si−55)− NRN (Si−24) + b) + b mod m

= a · (NRN (Si)) + b mod m [Lemma 4]

= NRN (NRN (Si)) [Lemma 1]

Lemma 5 fills a similar role in this case as Lemma 4 in the single-threaded case:
with its formula, the attacker can compute future output generated by the always-
new case from past observed samples, as well as past from future.

4.3.2 Practical Hindrance: Lost Samples

The target application may be accessible not only to the attacker, but also to its
regular users, who can themselves request and consume pseudorandom numbers

27



from the target generator. This leads to a violation of a key assumption in our
described attacks: that the attacker’s observed samples are consecutive.

This hindrance applies equally to both the single-threaded and the always-
new case; and also to the common use case attack as in 3.2: the prediction methods
we prescribe for all three of these proceed in a similar manner, and make the same
assumption that 55 consecutive samples were gathered. Figure 11 illustrates one
such lost sample.

X0 X1 X2 X3 X4 X5 ... X54 X55

S0 S1 S2 S3 S4 ... S53 S54

Attacker's observed samples

Figure 11: A user consumes X4, breaking the attacker’s samples

There is some recourse available to the attacker. First, lost samples can be
easily detected by gathering 56 samples instead of 55: if they are not consecutive,
then the 56th will not conform to the attacker’s prediction as calculated from the
first 55. The attacker could then continuously grab and validate samples from the
target generator until by luck 56 of them happen to be consecutive. Second, the
attacker may effect his attack when other users are least likely to be present; e.g. at
3 AM.

4.4 Conclusion

We introduce NRN (seed), a formula for new Random(seed).Next(), discovered ex-
perimentally and demonstrated by brute force. We introduce prediction methods for
the target case by applying properties of NRN in conjunction with the seed selection
methods employed by the various .NET environments — that is, a system timer in
.NET Framework, and the static instances s globalRandom and t threadRandom in
.NET Core and others. This formula and these prediction algorithms are a novelty,
original to our work.
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5 Tokage

In this section, we describe tokage, a tool implementing the target use case pre-
diction methods described in the previous section: specifically, .NET Framework
prediction, and both the single-threaded and always-new cases for .NET Core
and others. As an extra, we also implemented common use case prediction as
described in 3.2. tokage’s source code is publicly available on github [27].

5.1 Usage and Operation

tokage is a command line interface (CLI) tool written in python 3.8.11. In-
stallation consists in simply copying the repository, and the tool may then be run
with python tokage.py. No dependencies are required to run the tool other
than a base python install. Figure 12 illustrates tokage’s help message, with a brief
description for all its arguments.

Figure 12: tokage’s help message, printed when the -h argument is specified

tokage is intended to receive as arguments the path to an input file containing
a list of samples obtained by the target generator, and a single character specifying
which prediction method should be employed. The selected method is then applied
to generate and print predictions. We use the terms guess and prediction inter-
changeably, referring to this output. The amount of guesses produced can be set by
an optional argument -a, by default 1000.

The tool operates in two different modes: one for .NET Framework target case
prediction, and another for all three other prediction scenarios, which from now we
refer to as regular prediction. This is because, as described in 4.3.1, these three
follow similar algorithms, whereas .NET Framework prediction follows a completely
different approach.

Regular prediction: the input file is expected to have at least 55 samples.
These are then used to generate predictions by any one of Equation (2), Lemma 4,
or Lemma 5; depending on which prediction method was specified. tokage then
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outputs predictions such that the n-th prediction is expected to be equal to the n-th
next sample output by the target generator.

.NET Framework target case prediction: the input file must have 2 samples,
again one per line. Each sample must consist in the observed number along with
its respective request and response times, representing when it was generated. Two
additional arguments must be specified: -q for the target sample’s request time,
and -r for its response time. All timing information must have been measured with
the same clock, in milliseconds. An additional optional argument -l specifies what
was in 4.2.1 the maximum clock error value e, with a default of 50. The output for
this mode of operation has different meaning: the n-th guess is the n-th likeliest
value for the target sample.

Thus, a user is expected to first obtain such samples (and timestamps in the
.NET Framework case), and then input these into tokage to effect a prediction.

In the regular cases, the samples are not validated; that is, no checks are per-
formed to verify that the samples are consecutive, or even that they came from the
specified use case. On the other hand, validation is indeed performed for the .NET
Framework target case and an error is raised if the input samples are inconsistent
with the target case’s expected behaviour.

30



5.2 Implementation

Again, tokage is written in python 3.8.11. Its source code is structured into the
following files and directories:
tokage/

tokage.py
test.py
modules/

init .py
args.py
framework/

init .py
fileparse.py
estimator.py
timedsample.py

regular/
init .py

fileparse.py
common/

init .py
estimator.py

core/
init .py

estimator.py

� tokage.py is the entry-point script, i.e. the ”main”. It reads the command-
line arguments, then reads the input samples using the appropriate fileparse.py,
and forwards these to the appropriate estimator.py;

� test.py implements automated tests for tokage. It is further described in
5.5;

� init .py files are an empty files required by python to define a module or
submodule folder;

� args.py is responsible for defining and parsing command-line arguments. It
uses argparse from the python standard library;

� timedsample.py defines a class grouping a sample value with its request
and response times, used for .NET Framework target case prediction;

� fileparse.py files are responsible for reading samples from a file. One
such file covers all regular cases, and another covers .NET Framework
target case prediction;

� estimator.py files finally implement prediction.

Notably, regarding the estimator files:
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� modules/framework/estimator.py exposes a single method which im-
plements prediction as specified in 4.2.1. An attempt is made to compensate
for lag, as specified in 4.2.2. The value for k = sgn(seed) for Lemma 2 is
derived from the first two samples in the input file;

� modules/regular/core/estimator.py exposes two methods targeting
.NET Core and other environments: one for the single-threaded target
case, and another for the always-new target case. These proceed as described
respectively in 4.3.1.1 and 4.3.1.2;

� modules/regular/common/estimator.py exposes a single method, im-
plementing common case prediction as described in 3.2.

5.3 Objectives

For all three regular cases, tokage’s objective is to predict with perfect accuracy
all future output from the target generator, if the input samples are consecutive.
This is in fact mathematically guaranteed for our prediction methods for these three
cases — see Section 3.2, Lemma 4, and Lemma 5; therefore, our tests for these cases
are useful only to ensure our algorithms were implemented correctly.

For the .NET Framework target case, perfect accuracy is impossible — first be-
cause of Environment.TickCount ’s low resolution, and second because of lag. These
are both unpredictable phenomena. We aim to nevertheless compensate for these
factors as best we can, by employing our methods as described in 4.2.2.

5.4 Evaluation Metrics

Our fundamental unit in evaluating tokage’s performance is a test run. A test run
consists in obtaining i+m samples produced by the target generator, and running
tokage with the first i samples as input and the last m samples as its prediction
target. Recall that tokage outputs multiple guesses each time it is ran — we use gn
to denote the n-th output guess.

For all regular cases, we test tokage’s performance to verify that it matches our
theoretical expectations; that is, given 55 consecutive samples (i = 55), to accurately
predict all i+ n-th samples with each gn.

For the .NET Framework target case, as we scope a single target sample at a
time, it follows that m = 1, and the target sample is si. Each guess gn is a candidate
value for the target sample, with lower values of n i.e. earlier guesses being more
likely to be the correct value as per our prediction.

For this target case, we say that a test run has a guess score G if gG = si is
the correct guess for the target sample’s value, and we call a test run k-successful if
G ≤ k. We suggest two evaluation metrics based on the guess score, to be computed
on T = G0, G1, ..., Gn, the results of a batch with n test runs:

� µG, the mean value for the guess score;

� Sk(T )/n, the k-success ratio, where Sk(T ) counts how many of the n test
results in T were k-successful.
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Intuitively, µG provides insight into tokage’s general accuracy — it counts how
many guesses are needed, on average, before the correct value for the target sample
is found. The k-success ratio represents how likely it is for the correct guess to be
within the first k guesses.

Furthermore, adverse network conditions will detriment tokage’s performance.
Thus, we make an effort to run tests under various simulated scenarios. Finally,
to gain statistically significant data, we run a single test run configuration multiple
times, in what we call test batches.

5.5 Automated Tests

To gather the required data and measure our suggested metrics, we prepared and
ran automated tests. These were also written in python and are included with
tokage, in the file test.py. It is structured so that all relevant configuration is
included at the beginning of the file. The tests make use of the requests library,
which might not be included in a base python install.

To serve as a target for tokage’s prediction attacks, we wrote a mock server
named TokageVulnExample in C#, with its source code also published on github
[28]. It is configured to build two executables: one which runs the server on .NET
Framework 4.8, and the other on .NET 5. The automated tests depend on this
server: those who wish to run test.py must download and build the server’s
source code, and locate its directory in the tests’ configuration.

When ran, the server listens on http://localhost:8080, and upon any HTTP
request to /sample, responds with a number generated by one of the target use
cases of System.Random. Multiple command line arguments, shown in Figure 13
control how which use case is employed, and parametrise lag simulation, where
the server waits for a time before processing and responding to the request. We
include more details about these functionalities later on.

Figure 13: TokageVulnExample’s help message, printed when the -h argument is specified

test.py starts TokageVulnExample multiple times, once for each test batch,
with various different arguments defined by each batch. Next, the test code gathers
as many samples as needed from System.Random by making multiple requests to
http://localhost:8080/sample, and these are then used in test runs for tokage
to gather the evaluation metrics as described in 5.4.

TokageVulnExample furthermore includes a webpage interface as part of a system
designed to emulate scenario. This is intended for manual verification of tokage’s
efficacy, and demonstrative or instructive purposes. More details about this webpage
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scenario are included in the project’s README. Neither the interface nor any of its
underlying requests are in any way used by the automated tests.

5.5.1 Regular Cases

Recall the three regular cases - that is, the common use case of System.Random,
and the single-threaded and always-new threading scenarios for the target use
case on .NET Core and other environments. The test code starts a TokageVulnEx-
ample server with the proper arguments to configure its generation to the desired
target case:

� for the single-threaded case, the .NET 5 build is ran with no arguments;

� for the always-new case, the .NET 5 build is ran with the -n argument,
specifying that a new thread handles each request;

� for the common use case, the .NET 5 build is ran with the -s argument,
specifying the common use case of System.Random instead of the target use
case.

Each test run fetches 55 samples from the server, and uses tokage to generate n
predictions from these. The tests then fetch n more samples and compare these to
the predictions.

Test batches for regular cases specify which of the three regular cases is targetted,
how many predictions must be verified for each run (i.e. the value for n), and how
many test runs must be ran in the batch.

5.5.2 .NET Framework Target Case

Tests for this case attempt to simulate lag, since it is relevant to prediction quality.
We modelled lag by including two delays, one intended to simulate the client-to-
server network transit time, and the other for server-to-client transit time. In short,
for every request received by the server:

1. It first receives the request;

2. it then waits idly for a time, marking the first simulated delay;

3. it then processes the request, generating a sample;

4. it then waits idly again, marking the second simulated delay;

5. finally, it responds to the request, sending the generated sample’s value.

The amount of time waited for each delay is modelled by a random variable with
Lognormal(µln, σln), a distribution often used to fit or model RTT values [29]. Since
the argument values µln and σln for a log-normal do not represent its distribution’s
final mean and standard deviation values, we derive µln and σln from desired mean
and standard deviation values (µR, σR), as per equation (3).
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µln = log(µR)−
1

2
log((σR/µR)

2 + 1)

σln =
√

log((σR/µR)2 + 1)

(3)

The server derives both delays from numbers generated by a static instance of
System.Random itself. For the sake of simplicity, in our tests we presume that
both delays follow the same distribution, although reality might deviate from this
assumption. We expect that in such scenarios with different distributions, tokage’s
prediction quality would worsen.

Thus, whenever the server must effect a delay: it samples a log-normal distri-
bution, acquiring a numeric value t, and then waits for t milliseconds. One detail
worthy of note - if t happens to be negative, the server simply does not wait, because
it is nonsensical to wait for a negative time period.

Recall from 4.2.2 that our prediction method always prioritises the midpoint
between request time and response time - this means it presumes that the two
delays are likely to be nearly equal. A higher σR makes it more likely that they
instead be imbalanced - that one delay will be significantly greater than another.
Thus, we expect σR to have a notable effect on tokage’s performance. In contrast,
varying µR does not introduce any potential imbalance, so it can be expected to
have no effect on tokage’s performance.

The arguments -m and -d to TokageVulnExample set the mean and standard
deviations µR and σR for the delays’ distribution. .NET Framework target case
generation is achieved by running the .NET Framework 4.8 build without the -s
argument.

In a single test run, test.py successively obtains 3 samples from the server,
writing down the request and response times for each. All time values are obtained
with python’s time.time. Next, it runs tokage with the first 2 samples as inputs,
and the last sample’s times as its target for prediction. The value of the guess score
is found by searching for the target value in tokage’s output guesses - if the G-th
guess is correct, the guess score is set to G.

A test batch specifies a lag distribution (µR, σR), and how many test runs should
be ran using this distribution.

5.6 Configurations and Results

5.6.1 Regular Cases

We ran three test batches, one for each of the three regular cases. Each batch
would run 100 test runs, and each test run was configured to verify 55 predicted
samples — all predictions were correct. Separately, we ran manual tests using 55
non-consecutive samples, for which all predictions were incorrect.

Discussion. This matches the theoretical expectation for these prediction meth-
ods: perfect output if given correct input.
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5.6.2 .NET Framework target case

We ran 11 test batches for the 11 lag configurations defined by equation (4), with
each batch including 2000 test runs.

(µR, σR) = (20 ∗ n, 10 ∗ n) ∀n | n ∈ (0, 1, ..., 10) (4)

In total, these tests took approximately 8 hours to run. Despite the large amount
of time, they are not computationally expensive - most of the time is spent idly
waiting for the delays incurred by lag simulation. The results are presented in
figures 14 and 15
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Figure 14: Mean guess score over various simulated network conditions.
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Figure 15: k-success ratios over various simulated network conditions.

Discussion. Guess scores increase linearly as network conditions worsen. The
correct value is unlikely to be among the first few guesses, but chances increases as
more guesses are included. Matching our theoretical arguments, tokage never fails
to find the correct value if allowed to consider a large enough amount of guesses to
cover all possible values for ∆s as described in 4.2.2.

A tokage attack for this use case is likely to succeed over a stable connection; or
even over laggy connections, if a large number of guesses may be taken into account
(i.e. a large k). If neither condition can be met, the odds of success for a single
attack are low, at about 2% for k = 5 and σR = 100.

5.7 Conclusion

We present our command-line System.Random predictor tool tokage, describe how
we tested it, and show our results. For the common use case, as well as both
single-threaded and always-new threading cases for the target use case on .NET
Core and other environments: a perfect prediction is effected if correct inputs are
given. For the target use case on .NET Framework, prediction accuracy is high
if network conditions are favourable, or if many guesses may be taken into account.
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6 Conclusion

General-purpose PRNGs are often convenient to use and quick to run, and their
pseudorandom generation might even seem non-deterministic to the untrained eye.
In fact, they are most often easily predictable, and thus are completely unsuitable
for any context where security is involved.

In our work, we provide an overview on the principles and operation of regu-
lar PRNGs, and do the same for their security-oriented cousins, CSPRNGs. We
take apart C#’s default PRNG, System.Random, and introduce novelty predic-
tion methods for an unconventional yet popular use case. We package our findings
into the command-line tool tokage, together with a sample vulnerable application
TokageVulnExample for demonstrative purposes.

We hope that our work might in some way serve to convince both program-
mers and managers that the use of regular PRNGs in sensitive contexts is strictly
unacceptable, and that these should be switched out for CSPRNGs immediately,
wherever necessary.

6.1 Protection from Prediction

System.Random should never be used wherever predictability is unacceptable - a
CSPRNG should be used in its stead. The .NET standard library offers two op-
tions which can replace System.Random wherever needed: RNGCryptoService-
Provider and RandomNumberGenerator, which are both classes defined in the
System.Security.Cryptography Namespace. Neither of these is as well-documented
and advertised as System.Random itself - this is perhaps a point which Microsoft
could improve upon.
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6.2 Future Work

First, the general theme of our work — predicting the first output from a freshly-
initialised PRNG — could be applied to other generators. It is plausible that this
may also be an unstudied yet popular recourse not only for C#, but also for other
languages’ default PRNG implementations. As an example, a github search for the
equivalent scheme for Java’s util.Random can return over a hundred thousand
results [30].

Thread pools are a commonplace threading mechanism, with relevant conse-
quences for the target use case in .NET Core environments. In this work, we have
not found nor implemented an attack for this scenario; but we are confident such
an attack must exist.

Finally, many improvements could be made to tokage to improve its ease of use
or its predictive power. The potential options are too many to enumerate, but we
believe the most simple of these would be to implement continuous sample validation
as described in 4.3.2.
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A Constant Values Table for Various Xn

With Xn = a · |s|+ b mod (232 − 1):

n a b
55 1121899819 1559595546
56 630111683 1755192844
57 1501065279 1649316166
58 458365203 1198642031
59 969558243 442452829
60 1876681249 1200195957
61 962194431 1945678308
62 1077359051 949569752
63 265679591 2099272109
64 791886952 587775847
65 1582116761 626863973
66 1676571504 1003550677
67 1476289907 1358625013
68 1117239683 1008269081
69 1503178135 2109153755
70 1341148412 65212616
71 902714229 1851925803
72 1331438416 2137491580
73 58133212 1454235444
74 831516153 675580731
75 285337308 1754296375
76 526856546 1821177336
77 362935496 2130093701
78 750214563 70062080
79 210465667 1503113964
80 1381224997 1130186590
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81 1846331200 2005789796
82 1330597961 1476653312
83 593162892 1174277203
84 1729496551 174182291
85 792803163 401846963
86 565661843 973512717
87 863554642 638171722
88 53838754 2122881600
89 749855384 1380182313
90 93067682 1638451829
91 1778866589 65271247
92 1463507567 818200948
93 367760674 736891500
94 1219347826 2056119311
95 1648614489 1084756724
96 596622148 1537539262
97 1228675679 255459778
98 243017841 587232589
99 1132230640 1947978014
100 1891159862 1706746116
101 730619752 724046315
102 33642253 981848395
103 209795643 315304373
104 283831563 475269784
105 249493290 880625662
106 967871855 1543454120
107 1560699908 1331075398
108 437500212 1047903413
109 429989927 418573418
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B NRN experimental evidence

using System;

namespace NRNVerification
{

class Program
{

void Main()
{

bool allTrue = true;
long s = int.MinValue + 1; //using long instead

of int
//to prevent any complications due to overflow
for (; s <= int.MaxValue; ++s)
{

bool nrnCorrect = NRN(s) == new Random(s).
Next();

allTrue = nrnCorrect;
if (!allTrue) break;

}
if (allTrue)

Console.WriteLine("NRN was correct for all
integers in range");

else
Console.WriteLine($"NRN incorrect for {s}")

;
}

int NRN(int s)
{

// again, using long instead of int to prevent
overflow

long s_long = (long) s;
return (Math.Abs(s_long) * (1121899819) +
1559595546) % int.MaxValue;

}
}

}
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