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Resumo

Um problema desafiador no estudo de redes é o Roteamento Distribuído de Pacotes (DRP, em
Inglês), onde os nós devem definir uma interface de roteamento para os pacotes que chegam.
Os métodos de roteamento tradicionais apresentam algumas limitações quando não há uma
visão completa sobre a topologia da rede ou sobre o tráfego (ex. Redes Multi-Domínio ou
redes ad-hoc sem fio). Um bom candidato para o roteamento de pacotes é o uso de Multi-
Agent Reinforcement Learning (MARL), uma abordagem distribuída onde os agentes estão
localizados em cada nó e aprendem uma política de roteamento de maneira colaborativa. Al-
guns trabalhos têm sido realizados nessa direção. Entretanto, eles não usam uma plataforma
de simulação realista e padronizada. Eles também não consideram mensagens de protocolo
entre os agentes. Assim, propomos o PRISMA [5], um simulador de redes a nível de pacotes
baseado na biblioteca de redes NS3 [6]. O PRISMA é capaz de integrar com agentes MARL.
Também integramos o PRISMA com mecanismos de mensagens de protocolo e avaliamos o
desempenho e o overhead na comunicação. Pelo nosso conhecimento, essa é a primeira ferra-
menta desenhada que objetiva resolver DPR usando MARL e esse é primeiro trabalho a avaliar
o overhead de comunicação causados pelas mensagens de protocolo. Os resultados indicam
um tradeoff entre o desempenho e o overhead de comunicação, onde o agente o qual performa
melhor que o Algoritmo de Melhor Caminho e aproxima do Roteamento Oráculo apresenta
uma razão de overhead de 150%.

Palavras-chave: simulação de redes, Multi-Agent Reinforcement Learning, Reoteamento
distribuído de pacotes, mensagens de protocolo
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Abstract

One challenging problem in networking is the Distributed Packet Routing (DPR), where the
nodes have to define a routing interface for an incoming packet. The traditional routing meth-
ods present some limitations when there is no complete view about the network topology or
about the traffic (e.g. multi domain systems or wireless ad-hoc networks). One good candidate
for packet routing is the usage of Multi-Agent Reinforcement Learning (MARL), a distributed
approach, where the agents are located at each node and learn a routing policy in a collabo-
rative way. Some works were done in this direction. However, they don’t use a realistic and
standard simulation framework. Also, they don’t consider the control signalling messages be-
tween the agents. Then, we propose PRISMA [5], a packet level network simulator based on
the network library NS3 [6]. PRISMA is capable of integrating with a MARL algorithm. We
also integrated to PRISMA the control signalling mechanisms and evaluated the performance
and the communication overhead. For our knowledge, this is the first tool designed for solving
DPR using MARL, and this is the first work that evaluates the communication overhead caused
by control signalling. The results indicate a tradeoff between the performance and the commu-
nication overhead, where the agent, which outperforms Shortest Path and approximates to the
Oracle Routing, presented an overhead ratio of 150%.

Keywords: Network simulation, Multi-Agent Reinforcement Learning, Distributed packet
routing, control signalling
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Chapter 1: Introduction

In this chapter, we first present a general context and the motivation for our work in section 1.1.
Then, in section 1.2, we present its main objectives.

1.1 Context and motivation

Recently, applications and network management mechanisms in the network domain have at-
tracted a lot of attention in computer science research, such as video streaming [7], scheduling
[8] and control congestion [9]. The many types of networks and protocols may lead to complex
and dynamic systems. Moreover, nowadays, network applications generate a large amount of
data, creating a challenge to the researchers.

In this context, Machine Learning (ML) techniques are good candidates for managing net-
work protocols. These techniques can provide models with good accuracy and precision, for
example in avoiding congestion or predicting traffic patterns [10].

One complex task in networking is the packet routing. In this problem, the nodes exchange
packets, which must be forwarded towards their final destinations. When a packet arrives at a
node, the node has to make a local forwarding decision. One traditional method for deciding
the forwarding actions is through the Distributed Packet Routing (DPR). In this approach, as
can be seen in Figure 1.1, each node contains its own forwarding algorithm, which decides the
forwarding actions and updates the local forwarding tables.

Recently, new network architectures paradigms have appeared, such as the Software De-
fined Network (SDN). SDN working is described in Figure 1.1. In this paradigm, the switches
are connected to the same controller, which is responsible for defining the routing algorithms
and updating each switch’s forwarding table. In SDN, thus, the decisions are logically central-
ized and the controller requires access to the complete network. On the other hand, DPR uses
a distributed architecture and the nodes can define its routing algorithm locally. Our work is
based on the Distributed Packet Routing, since it does not require a centralized deployment.

The packet routing, even in the distributed approach, can lead to a very challenging problem
when there is no complete view of the topology or the nodes are not aware about the traffic
information (e.g. multi-domain wired and ad-hoc wireless networks). Then, one alternative
method is the usage of Multi-Agent Reinforcement Learning (MARL). In this approach, each
node (agent) works in a collaborative way applying a Reinforcement Learning (RL) algorithm
[11]. The agent aims to build a model capable of learning a good routing policy behavior
through several interactions with a given environment. This policy, based on a local network
state, performs an action which minimizes the end-to-end delay of the packets.

4
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Figure 1.1 Distributed Packet Routing (DPR) vs. Softwared Defined Network (SDN) environments

In order to learn, during the training phase, the nodes have to exchange some information
with its neighbors in order to adapt their policies to the different traffic conditions. This extra
information, which is shared between the nodes, is called control signalling. This information
can be seen as the protocol routing messages the node exchanges and it may pose an expressive
communication overhead.

Some works [12, 13, 14, 15] presented some methods for the usage of MARL for DPR.
They focused in building model designs and training mechanisms in order to improve the agents
performance. However, they use simplified ad-hoc simulation tools, which are not standard,
neither realistic. Then, due to the lack of reproducibility, it becomes hard to compare the
works. Moreover, these works don’t implement or evaluate the overhead of control signalling.

For performing the simulations, some important tools are available. The NS3 library [6]
may provide useful simulation tools. It generates discrete events and provide several protocol
implementations (e.g. TCP, UDP, IP). Furthermore, it also provides some statistical tools,
which are useful to measure the network performance.

In order to make the communication between the network simulation and the agent, one
important tool is the OpenAI Gym [16]. It creates a generic and well-structured interface,
which provides a toolkit allowing the agents to perform actions and receive observations and
rewards in a simple and standardized way, using numerical values.

Some works (e.g. Ns3-gym and ns3-ai, [2, 3]) were proposed for acting as an interface
between the network simulation using NS3 and the Open AI Gym environment. However,
these tools are not adapted for multi-agent approaches and for the Distributed Packet Routing
problem.
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1.2 Objectives

In this context, we propose the PRISMA (Packet Routing Simulator for Multi-Agent Rein-
forcement Learning) [5]. The PRISMA 1 is an open-source simulation framework based on an
extension of the NS3-gym approach [2] in order to manage DPR problems using MARL. In
this work, we aim at the following objectives:

1. To implement a MARL framework for packet routing allowing realistic and repro-
ducible simulations. This is the PRISMA framework.

2. To evaluate the control overhead introduced when we use MARL for packet routing.
A tool like PRISMA is required to achieve this objective.

This is the first tool, from our knowledge, to implement in a reproducible and realistic way
network simulations for MARL-DPR. This is also the first work to implement and analyse the
control signalling overhead and measure its impact to the models performance.

This report is organized in the following way. Firstly, in chapter 2, a background of some
concepts is provided. Then, in chapter 3, the works related to our implementation are presented.
In chapter 4, the PRISMA framework is described. Then, the main results of our experiments
are discussed in chapter 5. Finally, the main conclusions are drawn in chapter 6.

1Repository link available in: https://github.com/tsb4/prisma-v2



Chapter 2: Background

This chapter describes some background concepts for this work. Firstly, a background of dis-
tributed packet routing is provided. Then, we discuss the Reinforcement Learning (RL) process
for networking. Finally, we present the main methods for introducing the control signalling
messages between the agents.

2.1 Packet Routing

Let G(V,E) be a connected graph representing a network with V as the vertices set and E ⊆V 2

as the edges set. Each edge e ∈ E has a value indicating its cost. These costs can be associated
to the latency, link size, link speed or the associated monetary cost, for example [17].

Then, inside a network, the routing task is responsible for finding the neighbor node to
which the current node should transmit the packet to get as faster as possible to its final desti-
nation [18]. In other words, it aims to find good paths from a source to a destination.

The optimization aimed by the routing can be expressed in the following equation, as seen
in [18].

n = argmin
y∈neighbors(x)

Qx(d,y) (2.1)

Here, n represents the next hop the package will be delivered to, x is the current node, and
Qx(d,y) is the cost of sending the package from node x to a final destination node d through
a node y. Thus, based on this idea, each node must have a forwarding table linking each
destination to a neighbor, which will be the next hop for a given packet.

There are several methods of calculating the forwarding table in graphs theory. One of the
most known method is the Dijkstra’s algorithm [19]. This method, which is used in routing
protocols, such as Open Shortest Path First (OSPF), aims to find the shortest path from a spe-
cific node to every other node in a connected graph. However, it fails when the nodes don’t
have a complete view of the network topology (e.g. in Multi Domain Networks).

2.2 Reinforcement Learning for networking

Reinforcement Learning (RL) is a subject which has been studied in some domains, such as
robotics and games [20] and it is an interesting approach for networking. Sutton et al. [11]
describes how Reinforcement Learning works. The RL approach claims that an agent is capable
of learning a behavior through multiple iterations with an environment.

7



2.2 REINFORCEMENT LEARNING FOR NETWORKING 8

The RL techniques are suitable for solving DPR. In this process, the agents learn a good
routing policy capable of managing the packets forwarding. The approach is described in fig.
2.1. Each node n contains a policy π , which represents how desirable an action is. Then, based
on the policy, the agent takes an action an ∈ An, forwarding the packet to the node n′. The set
of actions An represent the different possible forwarding interfaces for an agent n.

Figure 2.1 Reinforcement Learning architecture

When a packet arrives at the node n′, the agent receives network state sn′ ∈ Sn′ . The set of
states S′n represent a set of the possible observations containing the network state for the node
n′. The agent also receives from the environment a reward rn. It defines how good was the state
transition from node n to node n′ through action an. The reward, in our approach, represents
the delay in this transition. This process repeats until the packet reaches its final destination.

The accumulated reward until the packet’s destination in the several steps may be calculated
by the following equation

Gn =
M

∑
k=0

γ
krnode(k) (2.2)

Here, node(k) indicates the node where the packet is at instant k, n is the initial node where
the packet was located (i.e. node(0) = n) and γ is a discount factor, such that 0 ≤ γ ≤ 1, that
adjusts how much the agent must privilege the closest future rewards. Then, if γ = 1, all the
hops delay are counted equally for the end-to-end delay computation.
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The Reinforcement Learning Equation will define the Q value or the state-action value
function, Qn

π(s,a), which defines how good it is to take an action a, given a policy π in node
n being in state s. This value represents the estimated delay until the packet reaches the final
destination depending on the action taken. Its value can be computed as the expected value for
the accumulated delay until the packet’s destination, as expressed in the following equation:

Qπ(s,a) = Eπ [Gn|Sn = s,An = a] (2.3)

With the Bellman equation, described below, it is possible to calculate the action-state val-
ues function recursively, summing the next reward and the state-action value for the next hop.
If we consider the packet is forwarded from the node n to node n′, the value Q for a node n can
be computed using the following equation:

Qπ(sn,an) = rn + γ ∗ min
an′∈An′

Qπ(sn′,an′) (2.4)

Considering the best Q-value (minimal value between the actions) for the node n’ equivalent
to τ , we can rewrite the above equation in the following way:

Qπ(sn,an) = rn + γ ∗ τ (2.5)

In the above equation, if we consider γ = 1, we have that the estimated delay from a given
node n until the packet destination is the sum of the next hop delay (i.e., the delay from node
n to node n′) and the estimated delay from the next hop until the destination, represented by τ .
The best Q-value (or the estimated delay until the packet’s destination) is called as target value.

Thus, the Reinforcement Learning algorithm aims to find an optimal policy which mini-
mizes the target value, i.e., minimizes the end to end delay, according to the following equation:

π
∗(sn) = argminaQπ(sn,a) (2.6)

2.2.1 Deep Q-Network Algorithm

For systems with a large observation space, analysing each state-action value becomes im-
possible. Then, a possible solution is the usage of Reinforcement Learning combined with
techniques of Deep Learning (DL). The Deep Q-Network (DQN) [1] is one algorithm which
proposes this combination. It is widely used for environments with a large state, as the case of
DPR. The algorithm implements an Artificial Neural Network (ANN), which predicts the Q-
Value for each action based on the state, which is passed as input for the neural network. Figure
2.2 describes one example of a neural network architecture in DQN. Here, the state space is
composed of 4 values. The hidden layer is composed of 5 neurons and the action apace has
a size of 3 elements. Each output ai ∈ A in the DQN neural network implementation (which
contains weights θ ) predicts the Q-Value for the state input and the correspondent action, i.e.
Qθ (s,ai).

The algorithm pseudocode can be observed in figure 2.3. For this, during the training pe-
riod, the agent collects a set of experiences samples which is formed by the tuple (sn,an,rn,sn′),
containing the current state, the action performed, the reward obtained and the next state,
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state s
Qθ (s,a0)
Qθ (s,a1)
Qθ (s,a2)

Figure 2.2 DQN Overview

respectively. The experiences samples are stored in a replay buffer and when updating the
weights, the agent randomly picks a batch of experience samples for updating the weights. In
this process, equation 2.4 is used as the target value for performing the gradient step.

2.2.2 Control Signalling

In the previous section, we could observe that the usage of MARL and DQN introduces a dis-
tributed approach for the packet routing problem. For this, the agents need to share some policy
information with their neighbors. This is used by the learning process and for the environment
changes adaptation (e.g. for traffic changing). In the MARL-DPR problem, the agents need
to access the target value of the neighborhood. This value is used for estimating the Q-value,
according to the equation 2.5.

For accessing the target value, during the training phase, the agents have to continuously
exchange some specific packets called control signalling packets. However, these packets in-
troduce an overhead in the network, which may compromise the network performance. Then,
it’s necessary to find a good trade off between the overhead introduced and the quality of the
control signalling mechanism. In this way, the control signalling information has to be large
enough to guarantee that the models can learn in a proper way and, on the other hand, if the
information is too large, its excessive overhead can disturb the data packets flow and affect the
network performance.
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Figure 2.3 DQN Pseudocode [1]

In order to find this trade off, in our approach, we consider two main mechanisms for the
control signalling: the estimated target value (value sharing) or the entire model responsible
for estimating the target value (model sharing).

1. Model Sharing: In this approach, the nodes share the neural networks weights with the
neighbors periodically. Here, a heavy information is exchanged between the nodes.

2. Value Sharing: In this approach, the nodes directly exchange the target value (estimated
delay until the packet’s final destination) with their neighbors. This information is, then,
used for computing the node’s target value when updating the policies, according to the
equation 2.5. In this control signalling mechanism, the shared information is lighter when
compared to the model sharing.

For each mechanism to be deployed, the simulation framework must implement some spe-
cial packets, which must be properly exchanged by the nodes. These packets are described in
section 4.



Chapter 3: Related Works

In this chapter, we will describe the related works. Firstly, we will see some approaches which
use RL algorithms for packet routing and how they build the environment information. Then,
we will analyse the main tools available for integrating the RL algorithms into a network sim-
ulation framework.

3.1 Reinforcement Learning for Packet Routing

3.1.1 Markov Decision Proccess formulation

In recent years, an extensive research in the packet routing field led to the development of new
techniques to optimize the problem. One of the most interesting approaches involves the usage
of Reinforcement Learning, such as in [12, 13, 14, 15].

In [12], the authors propose an environment, in which periodically, packets are generated
from a set of nodes Ns to a set of nodes Nd . Each node contains a FIFO (First-In, First-Out)
buffer, where the packets are enqueued before sending. Each link has also a maximal capacity
for sending packets. In the Markov Decision Proccess (MDP) described by the authors, the
observation space is composed by the packet destination and the additional information (which
contains the queue for each node from Nd). The action refers to the next hop. The reward is
calculated by the negative of the number of packets in the buffer queue.

The authors in [13] model a similar framework for routing application. Focusing in finding a
solution for multi-agent application (when the agents cooperate between themselves to learn the
behavior), they propose the following MDP. The state contains 3 components: the destination
node, additional information and the information shared between the neighbors. The action, as
well as in [12], corresponds to the next hop and the reward is the sum r = q+ l, where q is the
time spent in the queue and l represents the transmission latency to the next hop.

The authors in [14] proposes an algorithm, which is able to generalize for various environ-
ment situations. Their focus are the wireless systems and they propose as state a combination
of different sources: packet (TTL and position in queue), node (distance to the final destination,
queue length and node’s degree) and neighbors. Moreover, here, the authors use as input of the
model the network state and the action. The output is the Q-value corresponding for that pair
state-action. In this way, they can deploy generalized models.

In [15], the authors use Deep Neural Network (DNN) for applying the Deep Q-Routing
approach. Here, the observation is composed by the following elements: the current node, the
packet’s destination, the set of available neighbors and the network adjacency matrix.

12
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3.1.2 Control signalling evaluation

In the literature, the MARL-DPR has not been deeply analysed in terms of signalling overhead.
In some works, such as [14], the training procedure is not fully distributed. In this approach, a
centralized entity collects the agents model and distribute for every other agent in the network.
Thus, the nodes have access to any other agent’s model.

Some other approaches [13, 15] use a distributed approach for sharing the target value, but
using different mechanisms. In [15], the authors use the value sharing approach, where the
agents share with the neighbors the already computed target value. On the other hand, in [13],
the authors use the model sharing approach, where the neural networks are shared between the
neighbors, at each training step, for computing the target value.

The control signalling overhead in previous works were not properly analysed. In this way,
we propose evaluating the signalling overhead and the models performance using both ap-
proaches, model sharing and value sharing. For this, we use PRISMA, a simulation framework
developed by us for the MARL-DPR.

3.2 Simulation Tools for integrating with RL

The NS3 [6] is an useful library which offers several tools for deploying network simulation
frameworks. Moreover, the OpenAI Gym [16] serves as an important interface for RL applica-
tions. Then, some works were proposed for integrating the NS3 simulation framework to the
RL applications.

In [2], the authors introduced and described the ns3-Gym, a platform used for network
applications using reinforcement learning. The developed system can be divided into 2 main
modules, as is described in figure 3.1, the network simulation (NetSim) and the OpenAI Gym.
The module of network simulation is responsible for running the simulation events. It contains
the network model and can use several functions and tools provided by the NS3 simulator.

The OpenAI Gym module creates an interface for the agent and provides for this the envi-
ronment observations and receives the actions. To connect the framework and the environment,
the authors developed a middleware, which can be divided into two parts. The gateway is a
C++ implementation, located in the simulator. It takes the observation and standardizes it in a
numerical format. The proxy is a Python class responsible for making the interface between
the Gym environment and the gateway.

The authors created a general framework for network reinforcement problems and, in ad-
dition, created some specific environments. One of these is a flow and congestion control
environment for the TCP protocol.

On the other hand, the authors in [3] bring another approach in order to implement a frame-
work for Ns-3 simulation. Their solution is more general. It is not only restricted to RL OpenAI
Gym API, but to use several python-based ML applications. Their approach, called Ns3-ai, uses
a shared memory pool as the way of communication between the simulator and some Python
framework for ML, differently from the Ns3-Gym approach which uses sockets to make the
communication between the modules.

The choice for using a shared memory is due to the reduced time in transmitting packets.
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Figure 3.1 System architecture in ns3-gym [2]

Moreover, they implemented a high level interface in C++ and Python programs, so that it
becomes easier to adapt for different applications or requirements. The shared memory pool
proposed by the authors is described in figure 3.2 and is composed of three modules: the main
control block, which controls the entire pool and is responsible for updating its version; the
memory block and the control block, which includes the memory block information, such as
its size and address.

To validate the proposed architecture, the authors conducted an experiment to predict CQI
(Channel Quality Indication) using LSTM and the data generated by the ns-3 simulator. They
observed that the trained model achieved an accuracy above 50%, indicating that the framework
can provide good performance in learning. They also compared the transmission time between
the approach proposed and the one which uses socket as communication method. They applied
both approaches into a TCP congestion control using RL and observed that ns3-ai was 50 to
100 times faster than the other proposal.

For this project, we opted for using ns3-gym as base to implement the simulation framework
environment. The reason for this is due to the fact that ns3-gym offers a more stable version
and is better documented. However, in the future, we think of a migration to ns3-ai since it is
based on ns3-gym.
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Figure 3.2 Shared memory pool approach [3]



Chapter 4: PRISMA Framework

In this chapter, we will describe the PRISMA framework. First, the PRISMA architecture and
its design goals are presented. Then, we will describe the network simulation modelling. Here,
we will describe the main NS3 tools used for building the network simulation addressed to
packet routing. Finally, the node modules are described and the its logical behavior is presented,
including the managing of the control signalling packets.

4.1 Framework Architecture

As mentioned before, we developed the PRISMA [5], a simulation framework for distributed
packet routing in order to communicate with a MARL agent. The network simulation uses the
NS3 library and it is capable of communicating with a RL agent, which uses the OpenAI Gym
toolkit.

During the framework implementation, the following principles were used in the system
modeling:

1. Nodes isolation In the network simulation, each node policy runs in a separated instance
and does not disturb the other nodes functionalities.

2. Modularity The code is simple to reuse and change. The object-oriented design allows
the reusing of the code, which makes it easier and faster to implement.

3. Realistic simulation The network is simulated close to real. The usage of NS3 tools,
which uses random variables in order to generate packets, allows a more realistic simu-
lation scenario.

4. Completeness The network simulation is complete, containing the simulation and sta-
tistical tools for evaluating, such as packet loss rate, end-to-end delay, size of the buffers
and signalling overhead.

5. Easy to configure The framework provides a simple manner to configure, using param-
eters. Through them, it is possible to activate and deactivate the signalling mechanisms,
as well as tuning the main network parameters.

The system overview is presented in fig. 4.1. Initially, it reads a text file containing the
network’s adjacency matrix of the network. Based on this information, it builds the network
topology as a graph. The framework also reads a text file containing the traffic rate for each

16
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pair of of nodes in the network. The traffic rate information is used in the Poisson Process for
the packets generation in the network. More information will be discussed in section 4.3.1.

Figure 4.1 System overview

The system architecture design is described in figure 4.2. Inside the PRISMA framework,
there are several nodes, which are connected in a wired simulated network. Each node is also
connected to an agent, which is implemented in Python. For the communication between the
node and the agent, we use the OpenAI Gym [16] toolkit as the communication protocol.

One contribution of this work is the network simulation framework design and implemen-
tation. We can divide our contributions into two main parts: our network simulation modelling,
which implements, based on the NS3 library, the simulation mechanisms in a wired network;
and the node implementation, which describes the logical behavior of the node for solving the
DPR problem using MARL.

The node architecture is described in fig. 4.3. The node contains five modules. The data
packets generator is the module responsible for generating the data packets, which are sent
in the network according to the Traffic Rate Matrix. The control signalling packets genera-
tor module creates the packets which are sent as control signalling from each node for all its
neighbors during the training phase.

The routing module is responsible for the logical decisions when a packet arrives. It per-
forms the MARL agent action, forwarding the packet and collecting the network information
used as state. Furthermore, the module determines the sending of signalling packets. The rout-
ing module, as well as the data packets generator and the control signalling packet generator,
have access to the network channels, to which the node is connected.
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Figure 4.2 System architecture

The communication module is responsible for communicating with the agent, using the
Google Protobuf communication protocol. It is directly connected to the routing module. The
statistical module is responsible for measuring and providing the statistical measures of the
network.

In the following subsection, we describe the proposed network simulator, which uses NS3.
After that, we will deep in details for the node’s modules implementation.

4.2 The proposed NS3 Network Simulator

Our network simulator was implemented in C++, using the NS3 library [6], which contains
several useful tools for networking simulation. The main components used in the framework
are described below.

4.2.1 Network

In our network simulator, we designed a wired network, which is described in a single simu-
lation file. Here, the networking tools provided by NS3 [6] are defined, such as the nodes, the
channels and the applications. Then, these tools are gathered in order to compose the simulated
network. More details about these tools are described in the next sections.

4.2.2 Node

The node tool represents a node element in a network. It contains a unique IP address in the
network and is connected to other nodes in a wired network. In addition, the node contains a
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set of running applications, responsible for the packet generation on it, and a set of network
devices, which serves as interface between the node and the physical channels. More details
about the node implementation are presented in section 4.3.

4.2.3 Net Device

The Net Device tool is responsible for being the interface between a node and a physical chan-
nel. A node representation with multiple net devices is indicated in figure 4.4.

The Net Device sends the packets through the channel and receives the packets arriving at
the nodes.

When receiving a packet, the Net Device uncaps it until the network layer for accessing the
packet information, such as source, destination, and payload size. Each net device has an output
FIFO (First-In First-Out) queue for sending a packet, where the packets wait until the transmis-
sion. The maximum queue size is configurable and accessible by the nodes during the simula-
tion. When the Net Device receives a packet, but queueSize+ packetSize > maxQueueSize, the
Net Device drops the packet. At this moment, one signal is emitted for the agent, advertising
the loss.

4.2.4 Channel

The channel represents the physical link, through which the packets traverses. The channels
used in our project are of the point-to-point type. It means that each channel connects exactly
two Net Devices. Each channel has a constant associated delay, which indicate the time taken
by the packets to propagate through the channel.
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Figure 4.4 Node description in NS3

4.2.5 Packet

The packet class corresponds to the packets which are exchanged by the nodes. We can de-
fine two different kinds of packets: data packets and control signalling packets. Each packet
contains a tag (identification), indicating its type.

4.2.6 Application

The application tool provides a way for controlling a program running in a node. The applica-
tions are responsible for the packets generated inside the nodes. Each node may have several
applications running in it. Each application is associated with one socket. Then, after a packet
is generated, the socket sends it and the packet is forwarded to the correspondent sending Net
Device.

In our project, each node has two applications running: one responsible for generating
the data packets and one responsible for sharing the signalling packets. Both applications use
UDP sockets for sending. We opted for this protocol since there is no network traffic control
mechanisms in UDP. More details about the packets generator implementation are provided in
the next sections.

4.3 Node Implementation

The node element implementation can be divided into five modules: The data packets gener-
ator, the control signalling generator, the routing module, the communication module and the
statistical module. Here, we describe in details each module implementation.
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4.3.1 Data Packet Generator

The data packets generator module is responsible for generating packets that are going to be
sent to other nodes. In our design, each node generates data packets to all the other nodes
present in the network, with a rate according to the value corresponding to the pair indicated in
the Traffic Rate Matrix.

In order to approximate the simulation to a real-world process, the simulator can generate
traffic information in a non-deterministic way. When each node generates the traffic, it creates
the packets with a rate following an exponential random variable.

In this way, building a more complex and realistic simulation, with dynamic data gen-
eration, is possible. For this purpose, an application was developed to be a Poisson Traffic
Generator. The probability of the exponential distribution can be seen in the equation below, as
discussed in [6],

P(x)dx = αe−αxdx, x ∈ [0,∞) (4.1)

where α = 1
µ

and µ is the mean of the traffic rate for the pair. The value of the distribution
can be found by the following equation

x =−1/α log(β ) (4.2)

where β is a uniform variable between 0 and 1.

4.3.2 Control Signalling Packets Generator

During the training phase, each node shares with its neighbors signalling packets with infor-
mation that are used for policy updating in the learning process. In our work, we deployed and
analysed two main mechanisms for this purpose, as demonstrated in [4].

In the model sharing approach, the nodes exchange with its neighbors the neural network
weights in a periodic interval. These weights are used then to calculate the target value ac-
cording to the neighbor’s policy. On the other hand, in the value sharing approach, the nodes
exchange the already estimated target value. This information is, therefore, used for updating
the policy according to the equation 2.5.

In order to implement the signalling mechanisms, the nodes exchange specific packets con-
taining the control information. Two types of packets can be used for this purpose: the target
update packet and the replay memory update packet.

1. Target update packet: The target update packet contains the node’s neural network
weights. They are generated using a particular application, which runs inside each node.
Then, according to a constant Target Update Period U, the node retrieves the neural
network weights, splits them into segments of 512 bytes and sends them to each neighbor.

The weights shared by this packet are equivalent to the policy π in node n’ for calculating
the target value (τ) in equation 2.4.

2. Replay memory update packet: This packet contains the information, which is going
to be used by the nodes for updating the target value. This packet serves as an answer to
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the data packet’s arrival. When a node n forwards a data packet p to the node n′, this last
node creates a replay memory update packet p′, which is sent back to node n.

The composition of the replay memory update packet can vary depending on the control
signalling mechanism. In model sharing, the replay memory update packet is composed
of the reward (indicating the delay from the last hop) and the network state of the node
n′. This information is correspondent to the values of rn and sn′ , respectively, in equation
2.4, during the process of updating the policy.

In the value sharing approach, the replay memory update packet contains the reward and
the target value. These values are correspondent to rn and τ , respectively, which are
going to be used in equation 2.5 for updating policy, as described in section 2.

The control signalling information is summarized in table 4.1. The table indicates that the
model sharing approach uses both types of packets, whereas the value sharing uses only the
replay memory update packet. However, the replay memory update packet changes according
to the signalling mechanism.

Table 4.1 Control signalling mechanisms
Model Sharing Value Sharing

Target update packet Neural network weights –
Replay memory update packet Reward and state Reward and target value

4.3.3 Routing Module

The routing module is responsible for the logical decisions of the node. When a packet ar-
rives at node n, the routing module processes the packet and collects the network information
transmitted to the agent. Furthermore, the routing module triggers the transmission of the re-
play memory update packet. Then, when the agent performs the action, the module in node n
forwards the packet to the next hop n′. Table 4.2 gathers the notation used for describing the
routing module.

4.3.3.1 Routing module step behavior

The routing module behavior during a simulation step is described in fig. 4.5. When a Net
Device receives a data packet, it processes the packet, uncapping it until the network layer.
Then, some information, such as source, destination and the payload size are extracted. Also,
the tag containing the packet type is read.

Then, the routing module evaluates depending on the type of packet received. If the receiv-
ing packet is a control signalling packet (target update packet or replay memory update packet),
the node advises the agent, sending the packet information.

If the receiving packet is a data packet, firstly, the packet information is extracted, such as
source, destination and payload size. Moreover, the local node information, such as the queues
size, is collected. Then, the environment information (node and packet) are transmitted to the
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Table 4.2 Notation used in Routing module
Notation Meaning

N Total number of nodes
n current node
n′ Next hop
D Packet’s destination
qi Queue’s length for the the ith interface
r Reward

QT Queueing Time
T T Transmission Time
PT Propagation Time
w Worst Case Possible Delay
tr Transmission Rate (in bps)
ps Packet Size (in bits)
M Maximal queue’s size (in bits)

agent. Also, the node creates a replay memory update packet and sends it to the node that sent
the last data packet received.

If the receiving node is the packet’s final destination, the step is ended and the process
repeats. Otherwise, the node waits for the action to be performed by the agent. Then, the node
performs the action, forwarding the packet through the corresponding interface and the entire
process repeats.

4.3.3.2 Environment Information

During a step, when receiving a data packet, the information collected by the node is transmit-
ted to the agent. This information corresponds to the local node information and the packet
information, such as destination, source and packet size.

The environment information can be divided into four groups: network state observation,
reward, done flag and the extra information. The environment information is described below.

• Network state observation

The network state observation space is composed by the following vector:

[D, [q0,q1,q2, ...,qk]] (4.3)

In which D is the final destination of the packet and qi is the queue length of the ith

interface, in bytes. k is the total number of interface links the node has.

• Reward

The reward is the delay taken by the packet for traversing the last hop. There are two
possibilities for calculating this value. If the packet p arrives at the next node n′, the
reward can be calculated using the following equation:
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Figure 4.5 Routing module behavior in NS3

r = QT +T T +PT (4.4)

Here, the QT is the queueing time, i.e., the time where the packet is buffered in the queue
waiting to be transmitted; the T T is transmission time, given by equation 4.5, where tr
is transmission rate, in bps, and ps is the packet size, in bits. Furthermore, the PT is the
propagation time of the channel, in seconds.

T T =
ps
tr

(4.5)

On the other hand, if the packet is dropped by the node, the reward is calculated by the
equation 4.6. This value indicates the worst possible case delay in the network. In this
case, the reward considers that all the buffers are full and the packet transits at every
node, as can be seen in the equation below.

r = w =

(
(M+ ps)

tr
+PT

)
∗N (4.6)
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Where M is the maximal capacity of the buffer, in bits; ps is the packet size, in bits; tr is
the transmission rate, in bps, PT is the channel’s propagation delay, in seconds; and N is
the total number of nodes in the network. Assuming a high delay for the lost packets, we
enforce the policy for avoiding losing packets.

• Done flag

When a packet arrives at its final destination, the flag "done" is set to true. Otherwise, it
is false.

• Extra Info

The extra information contains further information: packet size, starting simulation time
of the packet, current simulation time, and a packet unique ID, as well as the statistical
measures, which are described in section 4.3.5.

4.3.4 Communication Module

The communication module is responsible for the communication between the simulated node
and the agent. For this, the Google Protobuf Protocol is used. It is an open-source protocol
used for communication of structured data, which uses the UDP protocol.

In fig. 4.6, the communication protocol during an episode step is shown. There are three
main entities participating in the process. The agent is implemented in Python. The agent
is responsible for determining the policy. The communication module, as well as the routing
module, are implemented in C++. The communication module serves as interface between
the agent and the routing module in the node, which forwards the packets and collects the
environment information during the simulation.

When the agent, based on the policy, takes a forwarding action, it transmits the sending
command via the Protobuf for the communication module. Then, the communication module
calls a execute action function and the routing module forwards the packet to the next hop.

When a packet incomes to the node, the routing module gets the environment information
described in section 4.3.3.2. The communication module encapsulates all the information onto
a single message and the information is transmitted to the agent, which will receive it, and
based on the network state, will take the next action.

4.3.5 Statistical module

The PRISMA framework is capable of, in real time, providing statistical measures about the
network, which are transmitted to the agent. In this way, it becomes easier to code and deploy
the models. The statistical measures provided by the PRISMA, can be divided into three main
groups: number of packets, packets delay and signalling overhead. The first group of the
measures is composed by the following information:

• Number of Injected Packets in network

• Number of Lost packets
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Figure 4.6 Communication module protocol

• Number of packets which arrive at its final destination.

• Number of Packets buffered in the queues

The group of statistics related to the packets delay is described below.

• Average End to End Delay

Average delay of packets which arrive at its final destination.

• Average cost

The cost measures the average end-to-end delay with a penalty for the packets which are
dropped in the path. For this penalty, we considered the worst possible delay, which is
expressed in equation 4.6. The average cost can be computed by the following equation,

c =
d +w · l

l +a
(4.7)

where d represents the sum of the end to end delay, l and a are, respectively, the number
of lost and arrived packets; and w is the worst possible delay, as described in equation
4.6.

The statistics about the overhead in signalling computes the Overhead Ratio (OR). It indi-
cates how much signalling is being injected in the network compared to the data traffic. It is
computed by the following equation:

OR =
CSA
DA

(4.8)

where, CSA and DA are, respectively, Control Signalling and Data packets Amounts, in
bytes.



Chapter 5: Simulation Results

In this chapter, we analyse the experimental results for the validation and evaluation of PRISMA
framework and the control signalling mechanisms. First, the MARL agent structure using DQN
is described. Then, the experiments settings are presented. After, the results evaluating the
control signalling overhead are provided Finally, we present the results involving different in-
ference intervals during the test phase. Some of results provided in this section can be observed
in [5] and [4].

5.1 Agent

The agent used for the experiments implements a Multi-Layer Perceptron (MLP) neural net-
work, as described in [4]. The general overview of the neural network used can be observed
in figure 5.1. The neural network takes as inputs the packet’s destination and the buffer occu-
pancy of each channel. The destination information is converted in a one-hot encoded vector.
In this way, the neural network presents an input layer with size N + out degree, in which N
and out degree correspond to the number of Nodes and the node’s number of interfaces, respec-
tively. The neural network contains three hidden layers. The first hidden layer is splitted in two
equal parts containing 32 neurons each. The layer then process the inputs separately. After, the
layer outputs are concatenated. The second and the third hidden layer contain 64 neurons each
and the output layer has size out degree, containing the Q-value for each interface. The layers
use ELU (Exponential Linear Units) as activation functions.
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Figure 5.1 Neural Network Overview [4]
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5.2 Experiments settings

5.2.1 Hardware Settings

The experiments were ran in a Dell Precision 7920 workstation equipped with an Intel Xeon
Gold 6230R Dual CPU (26 Cores, 2.1-4.0 GHz Turbo, 128 GB RAM) with 2 NVIDIA RTX
A5000 GPUs. Also we used Intel Core i9-12900H (14 cores HT, 2.5-5.0 GHz Turbo, 32 GB
RAM) with NVIDIA RTX A2000.

5.2.2 Network Parameters

For the simulation experiments, we used the Abilene topology [21], which is composed of 11
nodes. The topology representation is described in figure 5.2. For the network parameters,
we fixed the channel propagation delay to 1 ms and the transmission rate to 500 Kbps for
all the simulated links. These values values were chosen in order to allow the simulation
experiments in a suitable time. All the channels and Net Devices contain the same delay and
rate, respectively.
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Figure 5.2 Abilene Topology

In order to generate the traffic rate matrix H, we sampled each element hsd from the matrix,
where s is the source and d, the destination, from an Uniform Distribution U(0,1). We scale
these matrices by multiplying by a coefficient α . We increased α until the largest value αmax
for which there is no packet loss using the Oracle LP routing. The matrix αmax ·H is associated
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to a load factor ρ = 1. In total, we generated four traffic matrices with different coefficients α .
The data packets generated use transport protocol UDP over IP and have a constant payload

of 512 B. In addition, the UDP header has 8 Bytes and IP header contains 20 Bytes. Then,
summing, the packets have size of 540 B. The queues located in the Net Devices are set with a
maximal capacity of 16260 B. It corresponds to 30 packets of 540 B.

For the control signalling packets, the packets size varies, depending of the signalling mech-
anism used. Using the model sharing approach, the model which are shared has total size of
36000 B. The weights are split into segments with 512 B of payload. For the replay memory
update packet, the float and the integers values are encoded in 8 B slots. Then, for model shar-
ing, the replay memory update packets contains the values of rn and sn′ . Then, it is 8+8 ·KB
long, where K is the number of node’s interfaces.

In value sharing approach, the replay memory update packets have the payload 16 B long,
since it contains a pair of values (rn,τn′), representing the reward and the next hop’s target
value, respectively.

For the experiments, we tested two different agents: One using the model sharing and
another using the value sharing approach. For the benchmarks, we used the Shortest Path
Algorithm, which implements the Dijkstra algorithm [19]. The other benchmark used is the
Oracle LP. It is an optimization algorithm using Linear Programming.

We used three different metrics in order to evaluate the framework performance: the packet
loss rate, the average end-to-end delay and the average cost, which combines the two other
metrics. More details about the cost are described in section 4.3.5. We also evaluated the
overhead signalling ratio in the system.

5.2.3 Training parameters

The agents were initially pre-trained using a supervised learning approach in order to have a
behavior close to the Shortest Path. In this approach, a dataset of tuples (d,Lsp(d,n′)) was
created as training samples, where d is the final destination and Lsp(d,n′) is the Shortest path
length until d using the node n′ as next hop. Then, we minimized the loss and saved the weights
for the training phase.

The main hyperparameters used for the training are described in table 5.1. We used ADAM
as the optimizer. We also used the ε-greedy as a strategy for the tradeoff between exploration
and exploitation, starting with a value ε = 1.0 and ending with ε = 0.01.

Table 5.1 Training hyperparameters
Parameter value

Simulation time 60s
Learning rate 0.001

Batch size 512
Load factor 0.4

Replay buffer size 5000 (VS), 15000 (MS)
Target update time [1,2,3,4,5,6,7,8] ms

During the experiments, for the replay buffer size, we used two different values, depending
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on the agent used. For the model sharing approach, the replay buffer size was 15000 and for the
value sharing, we used 5000. When the replay buffer size is too small, it does not store enough
variety of samples and, when the size is too large, the samples can become outdated. Then, the
values used look ideal for the models performance. During the experiments, we also varied the
target update time used for synchronizing the models during the model sharing agent training.
After each training session, the model weights were saved.

5.2.4 Testing parameters

For the testing phase, we evaluated each model using the same traffic matrix we used for train-
ing. We tested using different load factors, from 0.6 until 1.4, with interval of 0.1. The idea is
testing the network in different traffic conditions, from a low traffic scenario until a very high
load traffic configuration. For each traffic matrix simulated, we tested under 5 different seeds.

The testing experiments had the simulation time of 20s. This time is sufficient for the
network to reach a stationary phase. During the testing phase, there is no need of generating
control signaling packets in the network, since there is no policy improvement.

5.3 Experiments analysis

5.3.1 Control signalling mechanisms analysis

In this subsection, we evaluate the control signalling and its impact in the network.
In Figure 5.3, we can observe the average cost over the target update period. Each point

consists of the average between the 9 load factors tested and the 4 traffic matrices. In these
experiments, we used the replay buffer size of 15000 for the model sharing. The target update
period does not affect the value sharing performance, since it does not use the target update
packet during the training.

We can observe that, from 1s to 5s as target update period, the model sharing performance
was close to the Oracle LP routing and from target update period of 5s, the average cost for the
model sharing approach increases significantly. This suggests that, when using a large update
period, the model gets outdated, which affects the model performance.

Comparing the model sharing and the value sharing approaches, we can also observe that
the model sharing presents a better performance, with cost close to the Oracle LP, whereas
the value sharing presented a performance slightly better when compared to the shortest path.
This occurs because, in value sharing, the models continuously update their target value. Then,
the model can be using outdated values. On the other hand, in model sharing, the models are
updated synchronously. Then, it indicates that the model sharing approach guarantees more
stability than the value sharing.

Fig. 5.4 shows the average cost over the control overhead ratio during the training phase.
Here, we used the experience replay memory size 5000 and 15000 for value sharing and model
sharing, respectively. Each point corresponds to a different value for the target update period.
We can observe that the value sharing approach presented a small overhead ratio (0.1) and its
performance was slightly better than Shortest Path, presenting as average cost 0.43s.



5.3 EXPERIMENTS ANALYSIS 31

On the other hand, we can observe that the model sharing approach presented a higher
overhead (1.5 for target update period of 5s), since, in this approach, the agents share the entire
model. However, it presented a better performance reaching close to Oracle LP routing, with
an average cost of 0.33s. We can verify, then, that in order to improve the model performance,
communication overhead is a price to pay.
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Figure 5.3 Avg cost vs. target update period [4]
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Figure 5.4 Average cost vs. overhead ratio [4]

5.3.2 Performance over different loads

We also analysed, during the testing phase, the system performance over different loads. In this
scenario, we tested the models on the load factors 0.6 to 1.4, with interval of 0.1. The results
are presented in figs. 5.5 - 5.7. In the y axis, there is the evaluated metric: the average loss ratio,
average end-to-end delay and the average cost, respectively; and in the x axis the load factor
used in the experiment. For each competitor, the maximum, minimum and the average value of
the experiments within the four traffic matrices. The average value is represented by the solid
line whereas the maximum and minimum value are indicated by the limits of the shaded area.

In figure 5.5, we can observe that the Model Sharing approach presents a lower average
loss ratio compared to the Shortest Path and the Value Sharing for all the loads tested. The
model sharing presents a value close to the Oracle routing between the loads 0.6 to 0.9. For
higher loads, the oracle LP routing presents a lower loss ratio than the model sharing. The
value sharing approach provides a loss ratio slightly better than the Shortest Path for all the
tested loads.

A similar behavior can be observed in figure 5.6. Here, the results for the average end-to-
end delay over the loads are presented. We can observe that for the loads between 0.7 to 1.1,
the Model Sharing approach presents a smaller delay when compared to the Oracle Routing.
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Figure 5.5 Packet Loss Ratio [4]
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Figure 5.7 Average Cost Per Packet [4]

We can also verify that, from load 1.0, the Shortest Path method presents a smaller average
end-to-end delay when compared to the the model sharing approach. This can be explained by
the high loss rate verified for the shortest path routing in high traffic loads. Then, the Shortest
Path can not manage the traffic load control. Thus, it presents a high loss rate and a not so high
end-to-end delay (since the packets always take the same path).

Figure 5.7 represents the average cost of the system over the load factor. We recall that the
cost is a combination of the end-to-end delay and the packet loss ratio. We can observe that
the model sharing approach outperforms the Shortest Path and the value sharing. The model
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sharing outperforms also the Oracle routing between the load 0.7 to 0.9. This behavior can be
explained for a smaller end-to-end delay observed for the model sharing during this interval.

5.3.3 Analysing different intervals over testing

We also analysed the PRISMA working latency and the algorithms performance under different
intervals during the testing phase. The usage of neural networks for deciding the forwarding
interface for each incoming packet can be a difficult and slow task. The high execution time
during the neural network forwarding can pose a high inference latency, which affects the
network working and the MARL approach viability.

The PRISMA’s execution time is related to the hardware capabilities of the router. In
this way, more powerful routers processors lead to a faster inference of the routing decision.
Then, in order to facilitate and allow more possibilities for the practical implementation, the
PRISMA simulation framework was adapted and evaluated for different intervals during the
testing phase.

In the experimented scenarios, we define an interval µ for running the DQN algorithm. This
means that at each µ packets forwarded, the node simulates a local forwarding for every node in
the network using the current buffer information, saves the forwarding interface corresponding
to each destination and use this information for the next µ packets.

We used one traffic matrix for this experiment and the other testing parameters were used
as described in section 5.2.4. In this experiment, we trained the model using the model sharing
signalling mechanism. We tested for the intervals 50, 100 and the original scenario, where at
each incoming packet, a neural network forwarding is ran for deciding the output interface.

Figure 5.8 indicate the average cost over the testing load factor for different interval can-
didates. We can observe that the original configuration is the one which presents the smallest
cost. This behavior is expected since there is no gap between the neural network forwarding
(which decides the output interface) and the packet forwarding moment, which makes the ac-
tion more accurate. The results with interval µ = 50 and µ = 100 present a slightly worse
performance compared to the original candidate.

Table 5.2 present the average execution time of packet forwarding for the the different
interval candidates, in seconds. We also displayed the results compared to the original time
in order to being able to compare. We can observe that the intervals 100 and 50 present a
smaller execution time, which are, respectively, 0.1 and 0.19 times smaller when compared to
the original.

Table 5.2 Training hyperparameters
Interval candidate Average execution time

(standard deviation) (ms)
Ratio average execution time
over original’s

original 3.2 (0.67) 1x
50 0.61(0.02) 0.19x
100 0.32 (0.02) 0.1x

This way, we can observe that the usage of different intervals during the testing phase can
be an essential parameter for practical implementation. Using a high frequency considerably
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Figure 5.8 Avg. cost over load factor for interval candidates.

decreases the average execution time and slightly increases the cost. We intend to deeply
analyze this possibility in future works.



Chapter 6: Conclusion and Future Works

In this work, we proposed the PRISMA, a simulation framework for Distributed Packet Routing
(DPR) in wired networks. In this problem, when receiving a packet, the node has to decide for
which interface it should route the packet. The PRISMA is capable of communicating with
a Multi Agent Reinforcement Learning approach. In this approach, each node contains an
autonomous agent, which is responsible for the routing policy in the node. We designed the
simulation environment using the NS3 library [6] The nodes exchange UDP packets between
themselves and we connected each simulated node with an OpenAI Gym [16] environment
instance, in order to communicate with the agent.

In our project, we added the control signalling mechanisms, which allows the agents to
exchange the models information through the network infrastructure in order to update the
policies. We evaluated two control signalling approaches: Model sharing (where the agents
exchange the neural network weights) and the value sharing (where the nodes exchange the
already computed target value).

The experiments show that Value Sharing presents a low communication overhead (with
ratio 0.1). However, its performance is just slightly better than Shortest Path. On the other hand,
the Model Sharing approach presented a good performance, close to the Oracle LP Routing.
However, it presented a high communication overhead (with ratio 1.5). Then, we can see that
for reaching a good performance, there is need of more overhead in communication. We also
observed that the usage of interval times in testing phase can lead to a smaller execution time,
with a small performance degradation. This can be essential to the system deployment.

For future works, we plan to analyse the framework when scaling for other topologies
(e.g. overlay networks) and link rates. We also want to investigate other control signalling
mechanisms, which may provide a smaller overhead and a similar performance when compared
to the model sharing.
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Appendix A - PRISMA’s code structure

The PRISMA framework is available in the link https://github.com/tsb4/prisma-v2. In the
framework, the components are modularized. This increases robustness and scalability al-
lowing the user to easily understand and modify the main code. Figure A.1 describes the code
structure. The file sim.cc plays the main role of the code serving as aggregator of the several
components of the system. The sim.cc also is the responsible for starting and stopping the
simulation.

The big-signaling-application.cc and poisson-application.cc implement the control signal-
ing packet generator and the Data packets Generator, respectively. They are implemented in the
core simulation through the files big-signaling-app-helper.cc and poisson-app-helper.cc. These
files serve as interface for the the generator modules. The compute-stats.cc implements the sta-
tistical module. It calculates and stores the simulation statistical measures The data-packet-
manager.cc, small-signaling-packet-manager.cc and big-signaling-packet-manager.cc imple-
ment the routing module. They manage the incoming packets for deciding the action to be
performed based on the agent’s policy. This module is aggregated in the file packet-routing-
gym.cc, which communicates with the agent.py, which contains the agent’s implementation.

Figure A.1 PRISMA’s code structure
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