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OUTLINE OF THE SEMINAR 

  Introduction 
   the need for semantics, the knowledge discovery 

process,  ontologies.   

 Overview of some methods for semantic data 
mining: 
  Semantic enhancement in the mining process/tasks 
  Data transformation based on domain knowledge 
  Navigate extracted models 

  Languages for Data Mining (DMQL)  
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SEMANTICS 

Semantics is the study of meaning*. 
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(*) Source: Wikipedia 

Semantic Data Mining means to get a 
meaning from the data mining task  
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WHY SEMANTIC DATA MINING? 

  Data Mining: the extraction of useful and interesting 
knowledge from large masses of data 

 However, Data Mining research put most of the effort 
on the algorithms development, efficiency, 
preprocessing, visualization… 

 The evaluation of the results is done with statistical 
quantitative measures (precision, recall, similarity, 
coverage, confidence, etc) 

 … BUT …. 

Which is the “real value” of the knowledge for the final 
users?  
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THE DATA MINING USER 

Which user… ? 

The DM analyst knows how to 
run DM tools, but usually lacks 
domain knowledge 

Final User/Domain Expert 
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Analyst User 

The Domain Expert is usually 
a professional in a specific 
domain, not necessarily knows 
how to run a DM tool/process 
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THE DATA MINING USER 

 Most of current DM evaluation techniques are 
oriented towards the DM analyst. Not necessarily 
useful for the domain expert.   

There is the need to take into account the 
knowledge coming from the domain experts 
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EXAMPLES 
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HOW TO ENRICH DATA MINING 
WITH SEMANTICS? 
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….. SEMANTIC ENRICHMENT!!!!! 

Integrating semantics in the knowledge 
discovery process  
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WHICH SEMANTICS? 

Semantics… 
 May come explicitly from the domain expert 

  Example: the knowledge about symptoms and disease 

 May be obtained from the context 
  Example: items that appears together with the 

pattern or the geographical area where an event 
happened, or specific attributes of the mined objects. 
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THE KNOWLEDGE DISCOVERY PROCESS 
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KDD process 

CRISP-DM process 
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DOMAIN KNOWLEDGE 

 Domain knowledge - or background knowledge – 
represents contextual information 

 This knowledge usually comes from the domain expert. 
Therefore is difficult to obtain! 

 For example, the knowledge about the correlation 
between given symptoms and a disease, the semantic 
relationships between items sold in a supermarket, etc. 

Some patterns are well known (thus useless), others are 
unknown but useless, others are UNKNOWN and 

USEFUL 
Milk sold together with cookies may be a well known 

correlation, while diapers with beer is unknown and 
interesting 
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SEMANTIC ENRICHMENT: WHEN, HOW AND 
WHERE? 
WHEN enriching: one step or the entire data mining 

process? 
    Some approaches in the literature work on single steps 

others on the entire process, some apply semantic 
enrichment to pre or post preprocessing, etc. 
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HOW to enrich the mining process/task? 
transforming the datasets or modifying the algorithms 
or improving the postprocessing… 

WHERE to store/represent semantics? 
 user may interact, but usually it is represented in 
ontologies or taxonomies 14 



WHAT IS AN ONTOLOGY? 

An ontology is a shared conceptualization of a 
domain 
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 A formal ontology is a set of definitions in a formal 
language for terms describing the world 

 Ontologies are typically designed by an ontology 
engineer or a domain expert to formally represent 
some knowledge 15 



ELEMENTS OF AN ONTOLOGY 

Main components of a formal ontology are: 

 Concepts (or classes): concepts of the domain.  
  Student, Course and Professor are three classes in a 

University ontology 

 Relationships between concepts. 
   professorHeldCourse may connect the classes 

Professor and Course.  

 Is_a hierarchy: represents the kind of 
relationship, or  father-child, or subclass 
  A Student isa Person  
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ELEMENTS OF AN ONTOLOGY 

 Instances: are specific elements of the domain. 
   a professor called John Smith is an instance of the 

Professor class 

 Axioms: represent formal sentences that are 
always true. Axioms are associated to classes 
thus defining the instances belonging to that 
class 
  A student is a person registered to a course 
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AN EXAMPLE OF AN ONTOLOGY 

Student Professor 

Course 

Person 

is_a is_a 

ProfessorHeldsCourse 

John Smith 

Instance of 

Student ≡ 
Person isRegistered Course 

IsRegistered 
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ONTOLOGY LANGUAGES 

 There are several 
languages used to define 
ontologies. 

 A well known standard 
is OWL (Semantic web)  

 Based on Description 
Logics  

 An OWL file is a text file 
written in XML 
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ONTOLOGY REASONERS 

 Ontology languages are typically accompanied by 
an inference engine called reasoner 

  It can perform some reasoning task:  
  subsumption – check the subclass relationship and 

check if the ontology is consistent  
  instance checking – checking if an instance belongs to 

a class. 

 Usually in semantic data mining reasoners are 
not used and the ontology is used as a conceptual 
map describing domain knowledge 
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TAXONOMY 

Animal 

Mammal 

An ontology with only is_a relationships is called a taxonomy 

Reptiles 

Felines Bovines 

Domestic 
Cat 

Tiger 

Snake 
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ORGANIZATION OF THE SURVEY 

 Semantic enrichment applies to the whole 
knowledge discovery process or specific steps; 

 Data preprocessing and postprocessing based on 
domain knowledge; 

 Navigate the extracted pattern 
  Data Mining Query Languages 
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SEMANTIC ENRICHMENT OF THE PROCESS 

Objective: integrate domain knowledge along the 
KDD/CRISP- DM process 
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ROLES OF MEDICAL ONTOLOGY IN 
ASSOCIATION MINING CRISP-DM CYCLE 

 Paper [1] describes domain knowledge in an ontology to 
be integrated to each step of the CRISP-DM process. 

  In Business Understanding ontologies help to get a better 
understanding of the domain 

  In Data Understanding map ontology elements  to data. 
Discover missing/redundant attributes 

  In Data Preparation ontologies may help in  selecting groups of 
attributes for DM tasks 

[1] Ceˇspivov´a, H., Rauch, J., Sv´atek V., Kejkula M., Tomeˇckov´a M.: Roles of Medical Ontology in Association Mining 
CRISP-DM Cycle. In: ECML/PKDD04 Workshop on Knowledge Discovery and Ontologies (KDO’04), Pisa 2004. 
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ROLES OF MEDICAL ONTOLOGY IN 
ASSOCIATION MINING CRISP-DM CYCLE 

  In the Modelling phase helps in designing the mining 
sessions 

  In the Evaluation phase patterns may be interpreted  
in terms of background knowledge 

  In the Deployment phase mining results are mapped 
back the ontology for the easily distribution of results 
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ROLES OF MEDICAL ONTOLOGY IN 
ASSOCIATION MINING CRISP-DM CYCLE 

Experiment on a medical dataset  
 Data Understanding: They mapped the STULONG* 

attributes to the UMLS^ ontology  find redundant 
attributes 

 Data Preparation: Grouped attributes into groups 
based on the ontology:  

(*) Publicy available dataset on cardiovascular disease http://euromise.vse.cz/challenge2004/data/index.html 
(^) A Medical Ontology 
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ROLES OF MEDICAL ONTOLOGY IN ASSOCIATION 
MINING CRISP-DM CYCLE 

 Mining phase: Use 
ontologies to design 
the individual 
sessions of the mining 
tasks, conceptually 
more homogeneous 
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ROLES OF MEDICAL ONTOLOGY IN 
ASSOCIATION MINING CRISP-DM CYCLE 
 Result Evaluation: Association rule results are 

matched to semantic relations that represents the 
explanation of the discovered association. 

 Confirmation of prior knowledge, new knowledge 
compatible with prior knowledge, or conflict. 
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SEMANTIC ENRICHMENT OF DATA MINING 
TASKS 
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SEMANTIC ENRICHMENT OF DATA MINING 
TASKS 

 Approaches that adapt DM algorithms to 
integrate background knowledge 

 Generally use ontologies and/or interactions with 
human experts 

 Paper [1] proposes to use background knowledge 
introduced manually by the user as rules, to 
extract association rules that are consistent with 
the background knowledge. 

 Association Rules are Confirmations, Exceptions 
or New Knowledge.  

[1] Ceˇspivov´a, H., Rauch, J., Sv´atek V., Kejkula M., Tomeˇckov´a M.: Roles of Medical Ontology in Association Mining 
CRISP-DM Cycle. In: ECML/PKDD04 Workshop on Knowledge Discovery and Ontologies (KDO’04), Pisa 2004. 
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MODIFICATION OF DATA MINING 
ALGORITHMS 

  In these approaches the data mining algorithms are 
modified to take into account semantics.  

 Use of concept hierarchy or constraints 

 Onto4AR [2] is an example of this kind of approaches 

[2] Cláudia Antunes. Onto4AR: a framework for mining association rules , in Workshop on Constraint-Based Mining and 
Learning (CMILE - ECML/PKDD 2007), Warsaw, September 2007. 
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ONTO4AR: A FRAMEWORK FOR MINING 
ASSOCIATION RULES 

This approach applies to association rules 
 Aside the interestingness measures (confidence, 

etc.) they propose content constraints, both based 
on ontologies.  

Given a transactions dataset D and an ontology O 
with instances I, find all association rules in the 
form A  B where A and B are disjoint itemsets 
of I that may occur on D, and the itemsets A and 
B satisfy a set of constraints C defined over O.  

[2] Cláudia Antunes. Onto4AR: a framework for mining association rules , in Workshop on Constraint-Based Mining and 
Learning (CMILE - ECML/PKDD 2007), Warsaw, September 2007. 
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ONTO4AR: A FRAMEWORK FOR MINING 
ASSOCIATION RULES 
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ONTO4AR 

Constraints are used to prune the candidate 
generation.  Two kinds of constraints: 

 Taxonomical constraints – based on the child-
parent relationship between classes 
 {Cake flour, Sugar} satisfies  the same-family constraint since 

Baking is the common father. 

 Non-taxonomical constraints – based on the 
relations between classes  
  {Halibut, Bancroft Chardonnay} is strongly connected 

since there is a relation in the ontology between their 
parents 
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ONTO4AR 

Frequent pattern  mining algorithm is modified to 
add a pruning step: candidates that does not 
satisfy the constraints defined in the ontology are 
disregarded 
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REFINE INTERMEDIATE RESULTS WITH 
DOMAIN KNOWLEDGE 
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REFINE INTERMEDIATE RESULTS WITH 
DOMAIN KNOWLEDGE 

These approaches consider semantics integration 
into the preprocessing and/or post processing 
phase 
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REFINE INTERMEDIATE RESULTS WITH DOMAIN 
KNOWLEDGE: DATA PREPROCESSING 

 Paper [1] proposed to match the source attributes 
with the corresponding ontology concepts  

 Therefore the initial dataset is reduced 
incorporating some semantics coming form the 
ontology 
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REFINE INTERMEDIATE RESULTS WITH DOMAIN 
KNOWLEDGE: DATA POSTPROCESSING 

 The GART approach: generalize association rules 
using taxonomies  reduce the number of rules 

[3] Domingues, Rezende, Using ontologies to facilitate the analysis of association rules Workshop of 
knowledge discovery and ontologies PKDD2005 
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USING ONTOLOGIES TO FACILITATE THE 
ANALYSIS OF ASSOCIATION RULES 
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REFINE INTERMEDIATE RESULTS WITH DOMAIN 
KNOWLEDGE: DATA POSTPROCESSING 

This approach uses ontologies to classify computed 
patterns into predefined ontology classes 

[4] Baglioni, Macedo, Renso, Trasarti, Wachowicz Towards Semantic Interpretation of Movement 
Behavior, AGILE 2009  
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TOWARDS SEMANTIC INTERPRETATION 
OF MOVEMENT BEHAVIOR 
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Trajectory*data*populates*
a*domain*ontology*and*
the*reasoning*engine*
classifies*trajectories*into*
the*class*satisfiyng*the*
concept*definition*
(axiom).**

Frequent(
Pattern*

Trajectory*

Commuter*
Pattern*

Commuter(Pattern*≡*a*pattern*frequently*starting*outside*the*city,*stopping*
inside*the*city*for*a*long*time*and**going*back*outside*the*city*

TOWARDS SEMANTIC INTERPRETATION OF 
MOVEMENT BEHAVIOR 

Ontology Axiom 
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PATTERN INTERPRETATION 
FRAMEWORK FOR MOVEMENT DATA 

Step 1: 
Pattern 

Discovery 

Step 2: 
Semantic 

Annotation 

Step 3: 
Pattern 
Analysis 

INTERPRETATION 

This method can be seen as a post 
processing but also a preprocessing. 

Patterns are annotated with semantic 
information and then mined again  

[5] Rebecca Ong, Monica Wachowicz, Mirco Nanni, Chiara Renso: From Pattern Discovery to 
Pattern Interpretation in Movement Data. ICDM Workshops 2010: 527-534 
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STEP 2: SEMANTIC ANNOTATION 

Step 1: 
Pattern 

Discovery 

Step 2: 
Semantic 

Annotation 

Step 3: 
Pattern 
Analysis 

INTERPRETATION 

     Item attributes 
•  ID 
•  Semantic 

attributes 
•  Pattern 

Membership 

        Patterns attributes 
•  ID 
•  From Step 1 

•  Parameters 
•  Output 

•  Semantic Attributes - 
aggregated 
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STEP 3: PATTERN ANALYSIS 

Step 1: 
Pattern 

Discovery 

Step 2: 
Semantic 

Annotation 

Step 3: 
Pattern 
Analysis 

INTERPRETATION 

1.  Attributes of 
individual objects 

2.  Attributes of 
discovered patterns 

1.  Correlation 
computation 

2.  Hierarchical 
clustering 

3.  Classification 
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PATTERN ANALYSIS 

 This framework has been applied to mobility data 
from a dataset of pedestrians moving in a park.  

 Semantics (annotations) comes from questionnaries 
filled by users. 

 The objective is to mine patterns enriched with 
semantic information.  
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NAVIGATE THE EXTRACTED PATTERNS 

The idea is to provide the user with a tool to 
navigate the extracted patterns in a meaningful 
way 
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USING ONTOLOGIES TO FACILITATE THE 
ANALYSIS OF ASSOCIATION RULES – GART [3] 
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NAVIGATE PATTERNS - SEMANTIC ENHANCEMENT 
OF PATTERN STORAGE AND QUERYING 

  Inductive database paradigm [6] 
 Databases storing data and the inductively 

inferred patterns. 
 Patterns are stored in the database and can be 

queried 

 Approaches for a Data Mining Query Language 

[6] Mannila Inductive Databases and Condensed Representations for Data Mining, International 
Loginc Programming Symposium, 1997 
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INDUCTIVE DATABASES  

  In his pioneering work Mannila formalized the notion of 
Inductive Database as a relational database with 
inductive rules.  

 The inductive database can be queried. For example 
association rule discovery can be expressed by a query 
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DATA MINING QUERY LANGUAGES - 
DMQL 
 A data mining task can be specified in the form of 

a data mining query 

 Create and manipulate data mining models 
through a SQL-based interface 

 Abstract away the data mining particulars 

 Data mining can be performed on data in the 
database 

 Approaches differ on what kinds of models should 
be created, and what operations we should be 
able to perform 
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A DATA MINING QUERY: 

A data mining query is defined in terms of data 
mining task primitives: 

 The set of task-relevant data to be mined 
 The kind of knowledge to be mined 
 The background knowledge to be used in the 

discovery process 
 The interestingness measures and thresholds for 

pattern evaluation 
 The expected representation for visualizing the 

discovered patterns 
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DATA MINING QUERY LANGUAGES 

The so-called closure property means that the 
results of data mining tasks can be stored and 
possibly mined again 

It has been inspired by Inductive databases and 
enables to combine queries in sequences and 
scripts. 
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DMQL – TWO APPROACHES 

 The first one assumes that data and pattern 
storage systems and solvers are already 
embedded into a common system.  
  DMQL and MINE RULE are representative of this 

approach.  

 A second approach assumes that storage systems 
are loosely coupled with solvers 
  OLE DB for DM (Microsoft). It is an API between 

different components that also provides a language 
for creating and filling extraction contexts, and then 
access them for manipulations and tests 
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DMQL - HAN ET AL. 

  It has been designed to support various rule mining extractions: 
classification rules, association rules.  

  Definition of meta-patterns, to restrict the syntactic aspect of the 
extracted rule 
  buy+(X,Y )�town(X,Berlin) � buy(X,Z)  
  restricts the search to association rules with implication 

between bought products for customers living in Berlin. 
Symbol + denotes that the predicate “buy” can appear several 
times in the left part of the rule.  

  also enables to define thresholds on the noise or novelty of 
extracted rules.  

  enables to define a hierarchy on attributes such that 
generalized association rules can be extracted. 

[7] Jiawei Han ,  Yongjian Fu ,  Wei Wang ,  Krzysztof Koperski ,  Osmar Zaiane DMQL: A Data Mining Query Language 
for Relational Databases (1996)  
[8] Jiawei Han, Yongjian Fu, Wei Wang, Jenny Chiang, Wan Gong, Krzysztof Koperski, Deyi Li, Yijun Lu, Amynmohamed 
Rajan, Nebojsa Stefanovic, Betty Xia, Osmar R. Zaïane: DBMiner: A System for Mining Knowledge in Large Relational 
Databases. KDD 1996: 250-255 
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DMQL – HAN ET AL. 

Syntax 
use database <database_name> 
{use hierarchy <hierarchy_name> for 
<attribute>} 

<rule_spec> 
related to <attr_or_agg_list> 
from <relation(s)> 
[where <conditions>] 
[order by <order list>] 
{with [<kinds of>] threshold = 
<threshold_value> [for <attribute(s)>]} 

Specify background 
knowledge 

Specify rules to be 
discovered 

Collect the set of 
relevant data to mine 

Specify threshold 
parameters 

Relevant attributes or 
aggregations 
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DMQL - EXAMPLE 

use database Hospital 
find association rules as Heart_Health 
related to Salary, Age, Smoker, 
Heart_Disease 

from Patient_Financial f, 
Patient_Medical m 

where f.ID = m.ID and m.age >= 18 
with support threshold = .05 
with confidence threshold = .7 
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MINE-RULE 

MINE RULE SimpleAssociations AS 

    SELECT DISTINCT 1..n item AS BODY 

         1..1 item AS HEAD 

           SUPPORT, CONFIDENCE 

FROM Purchase 

    GROUP BY transaction 

    EXTRACTING RULES WITH SUPPORT: 0.1 

    CONFIDENCE: 0.2 

[9] Meo, Psaila, Ceri, A New SQL-like Operator for Mining Association Rules VLDB 1996 

Meo et al proposed an SQL operator called MINE 
RULE for mining association rules 
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MINE-RULE 

MINE RULE SimpleAssociations AS 
    SELECT DISTINCT 1..n item AS BODY 
         1..1 item AS HEAD 
           SUPPORT, CONFIDENCE 
FROM Purchase 
    GROUP BY transaction 
    EXTRACTING RULES WITH SUPPORT: 0.1 
    CONFIDENCE: 0.2 

Purchase 

Simple Associations 
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MINE-RULE 

MINE-RULE can use taxonomies (as GART) 
for reducing the number of association rules  

MINE RULE BootsPantsRule AS 
      SELECT DISTINCT item AS BODY,    
                      item AS HEAD 
      SUPPORT, CONFIDENCE 

WHERE HEAD.item IN (SELECT node FROM 
ItemHierarchy WHERE ancestor=pants) 
    AND BODY.item IN (SELECT node FROM 
ItemHierarchy WHERE ancestor=boots) 

FROM Purchase 
   GROUP BY transaction 
    EXTRACTING RULES WITH SUPPORT: 0.1 
CONFIDENCE: 0.2 
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SUMMARY AND CONCLUSIONS 

 Semantic Data Mining develops techniques to 
embed semantics into the knowledge discovery 
process 

There is no a standard method to exploit semantics 
in KDD 

 Some approaches (1) enrich the KDD process, 
others (2) preprocess semantics transforming the 
dataset or the postprocessing or (3) modify the 
DM algorithms to take into account semantics   
or (4) navigate the extracted models  
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SUMMARY AND CONCLUSIONS 

Semantic Data Mining is still in its infancy and 
the approaches are sometimes preliminary. 
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There are several open issues: 

1.  How to represent/embed semantics?  
•  Ontology is the most used formalism, but how to build 

ontologies and to find a consensus is a drawback of this 
approach 

•  Domain expert users are usually difficult to involve in the 
mining process – they are not DM experts 

2.  How to evaluate/validate the results? 
•  Having considered semantics in the knowledge discovery 

should guarantee that the patterns are “semantic-
enriched”…. but how to validate them? 
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