DATA MINING: ASSOCIATION ANALYSIS *BASIC CONCEPTS AND ALGORITHMS*

Chiara Renso KDD-LAB ISTI- CNR, Pisa, Italy

ASSOCIATION RULE DISCOVERY: DEFINITION

- Given a set of records each of which contain some number of items from a given collection;
	- Produce dependency rules which will predict occurrence of an item based on occurrences of other items.

 {Milk} --> {Coke} {Diaper, Milk} --> {Beer}

ASSOCIATION RULE DISCOVERY: APPLICATION 1

Marketing and Sales Promotion:

Let the rule discovered be

{Bagels, … } --> {Potato Chips}

- <u>Potato Chips as consequent</u> => Can be used to determine what should be done to boost its sales.
- Bagels in the antecedent => Can be used to see which products would be affected if the store discontinues selling bagels.
- Bagels in antecedent *and* Potato chips in $\overline{\text{consequent}} \Rightarrow \text{Can be used to see what products}$ should be sold with Bagels to promote sale of Potato chips!

ASSOCIATION RULE DISCOVERY: APPLICATION 2

Supermarket shelf management.

- Goal: To identify items that are bought together by sufficiently many customers.
- Approach: Process the point-of-sale data collected with barcode scanners to find dependencies among items.
- A classic rule --
	- If a customer buys diaper and milk, then he is very likely to buy beer.
	- So, don't be surprised if you find six-packs stacked next to diapers!

ASSOCIATION RULE MINING

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

Example of Association Rules

 ${D}[D] \rightarrow {B}$ eer}, ${Milk, Bread} \rightarrow {Eggs, Coke},$ ${Beer, Bread} \rightarrow {Milk},$

Implication means co-occurrence, not causality!

DEFINITION: FREQUENT ITEMSET

Itemset

- A collection of one or more items
	- Example: {Milk, Bread, Diaper}
- k-itemset
	- \triangle An itemset that contains k items

Support count (σ**)**

- Frequency of occurrence of an itemset
- E.g. σ({Milk, Bread,Diaper}) = 2

Support

- Fraction of transactions that contain an itemset
- E.g. s({Milk, Bread, Diaper}) = $2/5$

Frequent Itemset

– An itemset whose support is greater than or equal to a *minsup* threshold

DEFINITION: ASSOCIATION RULE

Association Rule

- An implication expression of the form X \rightarrow Y, where X and Y are itemsets
- Example: ${Milk, Diaper} \rightarrow {Beer}$

Rule Evaluation Metrics

- Support (s)
	- ◆ Fraction of transactions that contain both X and Y
- Confidence (c)
	- ◆ Measures how often items in Y appear in transactions that contain X

Example:
\n{Milk, Diaper}
$$
\Rightarrow
$$
 Beer
\n
$$
s = \frac{\sigma(Milk, Diaper, Beer)}{lT l} = \frac{2}{5} = 0.4
$$
\n
$$
c = \frac{\sigma(Milk, Diaper, Beer)}{\sigma(Milk, Diaper)} = \frac{2}{3} = 0.67
$$

 \overline{a}

ASSOCIATION RULE MINING TASK

- Given a set of transactions T, the goal of association rule mining is to find all rules having
	- support ≥ *minsup* threshold
	- confidence ≥ *minconf* threshold
- Brute-force approach:
	- List all possible association rules
	- Compute the support and confidence for each rule
	- Prune rules that fail the *minsup* and *minconf* thresholds
- \Rightarrow Computationally prohibitive!

MINING ASSOCIATION RULES

Example of Rules:

 ${Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)$ ${Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)$ ${Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)$ ${Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)$ ${D}[aper] \rightarrow {M}$ ilk, Beer} (s=0.4, c=0.5) ${Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)$

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Data Mining course - UFPE - June 2012 Data Mining course - UFPE - June 2012

MINING ASSOCIATION RULES

- Two-step approach:
	- 1. Frequent Itemset Generation
		- Generate all itemsets whose support \geq minsup
	- 2. Rule Generation
		- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

FREQUENT ITEMSET GENERATION

- Brute-force approach:
	- Each itemset in the lattice is a candidate frequent itemset
	- Count the support of each candidate by scanning the database List of **Transactions**

- Match each transaction against every candidate
- Complexity \sim O(NMw) => Expensive since M = 2^d !!!

FREQUENT ITEMSET GENERATION STRATEGIES

- Reduce the number of candidates (M)
	- Complete search: M=2d
	- Use pruning techniques to reduce M
- Reduce the number of transactions (N)
	- Reduce size of N as the size of itemset increases
	- Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
	- Use efficient data structures to store the candidates or transactions
	- No need to match every candidate against every transaction

REDUCING NUMBER OF CANDIDATES

Apriori principle:

- If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$\forall X, Y : (X \subseteq Y) \Longrightarrow s(X) \geq s(Y)$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

ILLUSTRATING APRIORI PRINCIPLE

Data Mining course - UFPE - June 2012 Data Mining course - UFPE - June 2012

APRIORI ALGORITHM

- Method:
	- $-Let k=1$
	- Generate frequent itemsets of length 1
	- Repeat until no new frequent itemsets are identified
		- Generate length $(k+1)$ candidate itemsets from length k frequent itemsets
		- Prune candidate itemsets containing subsets of length k that are infrequent
		- Count the support of each candidate by scanning the DB
		- Eliminate candidates that are infrequent, leaving only those that are frequent

FACTORS AFFECTING COMPLEXITY

- Choice of minimum support threshold
	- lowering support threshold results in more frequent itemsets
	- this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
	- more space is needed to store support count of each item
	- if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
	- since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
	- transaction width increases with denser data sets
	- This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

RULE GENERATION

- Given a frequent itemset L, find all non-empty subsets $f \subset L$ such that $f \to L - f$ satisfies the minimum confidence requirement
- If ${A, B, C, D}$ is a frequent itemset, candidate rules: $ABC \rightarrow D$, $ABD \rightarrow C$, $ACD \rightarrow B$, $BCD \rightarrow A$, $A \rightarrow BCD, B \rightarrow ACD, C \rightarrow ABD, D \rightarrow ABC$ $AB \rightarrow CD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrow AD,$ $BD \rightarrow AC$, $CD \rightarrow AB$,
- If $|L| = k$, then there are $2^k 2$ candidate association rules (ignoring $L \rightarrow \emptyset$ and $\emptyset \rightarrow L$)

RULE GENERATION

- How to efficiently generate rules from frequent itemsets?
	- In general, confidence does not have an anti-monotone property

 $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$

– But confidence of rules generated from the same itemset has an anti-monotone property

- e.g.,
$$
L = \{A, B, C, D\}
$$
:

 $c(ABC \rightarrow D) \geq c(AB \rightarrow CD) \geq c(A \rightarrow BCD)$

 Confidence is anti-monotone w.r.t. number of items on the Right Hand Side of the rule **20**

Data Mining course - UFPE - June 2012 Data Mining course - UFPE - June 2012

PATTERN EVALUATION

 Association rule algorithms tend to produce too many rules

- many of them are uninteresting or redundant
- Redundant if ${A, B, C} \rightarrow {D}$ and ${A, B} \rightarrow {D}$ have same support & confidence

 Interestingness measures can be used to prune/rank the derived patterns

 In the original formulation of association rules, support & confidence are the only measures used

COMPUTING INTERESTINGNESS MEASURE

Given a rule $X \rightarrow Y$, information needed to compute rule interestingness can be obtained from a contingency table. f denotes the frequency.

Contingency table for $X \rightarrow Y$


```
f_{11}: support of X and Y
f_{10}: support of X and \overline{Y}f_{01}: support of X and Y
f_{00}: support of X and Y
```
 f_{11} is the number of times X and Y appears together in the same rule …..

 \overline{X} means that X is absent from the transaction

DRAWBACK OF CONFIDENCE

Association Rule: Tea → Coffee

Support = 15%

Confidence= $P(Coffee|Tea) = 0.75$

but $P(Coffee) = 0.9$ people who drinks coffee regardless they drink tea or not

 \Rightarrow Although confidence is high, rule is misleading

$$
\Rightarrow P(Coffee|\overline{Tea}) = 0.9375
$$

⇒Problem: the measure ignores the support of the itemset of the consequent!

STATISTICAL-BASED MEASURES

 Measures that take into account statistical dependence. Example:

$$
Lift = \frac{P(Y \mid X)}{P(Y)} = \frac{c(X \rightarrow Y)}{s(Y)}
$$

 $Lift = 1$ means independent Lift > 1 means positively correlated Lift < 1 means negatively correlated 25

EXAMPLE: LIFT/INTEREST

Association Rule: Tea → Coffee

Support $= 15%$

Confidence= $P(Coffee|Tea) = 0.75$

but $P(Coffee) =$

 \Rightarrow Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)₂₆

There are lots of measures proposed in the literature

Some measures are good for certain applications, but not for others

What criteria should we use to determine whether a measure is good or bad?

What about Aprioristyle support based pruning? How does it affect these measures?

SUBJECTIVE INTERESTINGNESS MEASURE

Subjective measure:

- Rank patterns according to user's interpretation
	- A pattern is subjectively interesting if it contradicts the expectation of a user (Silberschatz & Tuzhilin)
	- A pattern is subjectively interesting if it is actionable (Silberschatz & Tuzhilin)

INTERESTINGNESS VIA UNEXPECTEDNESS

Need to model expectation of users (domain knowledge)

Unexpected Patterns

 Need to combine expectation of users with evidence from data (i.e., extracted patterns)

-