DATA MINING: ASSOCIATION ANALYSIS BASIC CONCEPTS AND ALGORITHMS

Chiara Renso KDD-LAB ISTI- CNR, Pisa, Italy

ASSOCIATION RULE DISCOVERY: DEFINITION

- Given a set of records each of which contain some number of items from a given collection;
 - Produce dependency rules which will predict occurrence of an item based on occurrences of other items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

tules Discovered: {Milk} --> {Coke} {Diaper, Milk} --> {Beer}

ASSOCIATION RULE DISCOVERY: APPLICATION 1

• Marketing and Sales Promotion:

• Let the rule discovered be

{*Bagels*, ... } --> {*Potato Chips*}

- <u>Potato Chips as consequent</u> => Can be used to determine what should be done to boost its sales.
- <u>Bagels in the antecedent</u> => Can be used to see which products would be affected if the store discontinues selling bagels.
- <u>Bagels in antecedent and Potato chips in</u> <u>consequent</u> => Can be used to see what products should be sold with Bagels to promote sale of Potato chips!

ASSOCIATION RULE DISCOVERY: APPLICATION 2

• Supermarket shelf management.

- Goal: To identify items that are bought together by sufficiently many customers.
- Approach: Process the point-of-sale data collected with barcode scanners to find dependencies among items.
- A classic rule --
 - If a customer buys diaper and milk, then he is very likely to buy beer.
 - So, don't be surprised if you find six-packs stacked next to diapers!

ASSOCIATION RULE MINING

• Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

 ${Diaper} \rightarrow {Beer},$ ${Milk, Bread} \rightarrow {Eggs, Coke},$ ${Beer, Bread} \rightarrow {Milk},$

Implication means co-occurrence, not causality!

DEFINITION: FREQUENT ITEMSET

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- E.g. $\sigma({Milk, Bread, Diaper}) = 2$

Support

- Fraction of transactions that contain an itemset
- E.g. $s({Milk, Bread, Diaper}) = 2/5$

Frequent Itemset

- An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

DEFINITION: ASSOCIATION RULE

Association Rule

- An implication expression of the form X
 → Y, where X and Y are itemsets
- Example:
 {Milk, Diaper} → {Beer}

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items		
1	Bread, Milk		
2	Bread, Diaper, Beer, Eggs		
3	Milk, Diaper, Beer, Coke		
4	Bread, Milk, Diaper, Beer		
5	Bread, Milk, Diaper, Coke		
ample: {Milk,Diaper} \Rightarrow Beer			
(Milk.Diaper.Beer) 2			

Example:

$$\{\text{Milk, Diaper}\} \Rightarrow \text{Beer}$$

$$s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper, Beer})} = \frac{2}{3} = 0.67$$
7

ASSOCIATION RULE MINING TASK

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support $\geq minsup$ threshold
 - confidence \geq *minconf* threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the *minsup* and *minconf* thresholds
- \Rightarrow Computationally prohibitive!

MINING ASSOCIATION RULES

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

 $\{ Milk, Diaper \} \rightarrow \{ Beer \} (s=0.4, c=0.67) \\ \{ Milk, Beer \} \rightarrow \{ Diaper \} (s=0.4, c=1.0) \\ \{ Diaper, Beer \} \rightarrow \{ Milk \} (s=0.4, c=0.67) \\ \{ Beer \} \rightarrow \{ Milk, Diaper \} (s=0.4, c=0.67) \\ \{ Diaper \} \rightarrow \{ Milk, Beer \} (s=0.4, c=0.5) \\ \{ Milk \} \rightarrow \{ Diaper, Beer \} (s=0.4, c=0.5)$

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Data Mining course - UFPE - June 2012

10

MINING ASSOCIATION RULES

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support \geq minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

FREQUENT ITEMSET GENERATION

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database
 Transactions
 List of

- Match each transaction against every candidate
- Complexity ~ $O(NMw) => Expensive since M = 2^d !!!$

FREQUENT ITEMSET GENERATION STRATEGIES

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

14

REDUCING NUMBER OF CANDIDATES

• Apriori principle:

- If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$\forall X, Y : (X \subseteq Y) \Longrightarrow s(X) \ge s(Y)$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

ILLUSTRATING APRIORI PRINCIPLE

APRIORI ALGORITHM

- Method:
 - Let k=1
 - Generate frequent itemsets of length 1
 - Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - ◆ Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

FACTORS AFFECTING COMPLEXITY

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - transaction width increases with denser data sets
 - This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

Data Mining course - UFPE - June 2012

RULE GENERATION

- Given a frequent itemset L, find all non-empty subsets
 f ⊂ L such that f → L − f satisfies the minimum
 confidence requirement
- If {A,B,C,D} is a frequent itemset, candidate rules: ABC \rightarrow D, ABD \rightarrow C, ACD \rightarrow B, BCD \rightarrow A, A \rightarrow BCD, B \rightarrow ACD, C \rightarrow ABD, D \rightarrow ABC AB \rightarrow CD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrow AD, BD \rightarrow AC, CD \rightarrow AB,
- If |L| = k, then there are $2^k 2$ candidate association rules (ignoring $L \rightarrow \emptyset$ and $\emptyset \rightarrow L$)

RULE GENERATION

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an anti-monotone property

 $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$

 But confidence of rules generated from the same itemset has an anti-monotone property

- e.g.,
$$L = \{A, B, C, D\}$$
:

 $\mathrm{c}(\mathrm{ABC} \twoheadrightarrow \mathrm{D}) \geq \mathrm{c}(\mathrm{AB} \twoheadrightarrow \mathrm{CD}) \geq \mathrm{c}(\mathrm{A} \twoheadrightarrow \mathrm{BCD})$

 Confidence is anti-monotone w.r.t. number of items on the Right Hand Side of the rule

Data Mining course - UFPE - June 2012

22

PATTERN EVALUATION

• Association rule algorithms tend to produce too many rules

- many of them are uninteresting or redundant
- Redundant if $\{A,B,C\} \rightarrow \{D\}$ and $\{A,B\} \rightarrow \{D\}$ have same support & confidence

• Interestingness measures can be used to prune/rank the derived patterns

 In the original formulation of association rules, support & confidence are the only measures used

Computing Interestingness Measure

 Given a rule X → Y, information needed to compute rule interestingness can be obtained from a contingency table. f denotes the frequency.

Contingency table for $X \rightarrow Y$

	Y	Y	
Х	f ₁₁	f ₁₀	f ₁₊
x	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f ₊₀	T

```
\begin{array}{l} f_{11} : \text{ support of X and Y} \\ f_{10} : \text{ support of } \underline{X} \text{ and } \overline{Y} \\ f_{01} : \text{ support of } \underline{X} \text{ and } \underline{Y} \\ f_{00} : \text{ support of } X \text{ and } Y \end{array}
```

 f_{11} is the number of times X and Y appears together in the same rule

X means that X is absent from the transaction

DRAWBACK OF CONFIDENCE

	Coffee	<u>Coffee</u>	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea \rightarrow Coffee

Support = 15 %

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9 people who drinks coffee regardless they drink tea or not

 \Rightarrow Although confidence is high, rule is misleading

$$\Rightarrow$$
 P(Coffee|Tea) = 0.9375

 \Rightarrow Problem: the measure ignores the support of the itemset of the consequent!

STATISTICAL-BASED MEASURES

• Measures that take into account statistical dependence. Example:

$$Lift = \frac{P(Y \mid X)}{P(Y)} = \frac{c(X \rightarrow Y)}{s(Y)}$$

Lift = 1 means independent Lift > 1 means positively correlated Lift < 1 means negatively correlated

EXAMPLE: LIFT/INTEREST

	Coffee	Coffee	
Теа	15	5	20
Теа	75	5	80
	90	10	100

Association Rule: Tea \rightarrow Coffee

Support = 15%

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) =

 \Rightarrow Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)₂₆

There are lots of measures proposed in the literature

Some measures are good for certain applications, but not for others

What criteria should we use to determine whether a measure is good or bad?

What about Aprioristyle support based pruning? How does it affect these measures?

#	Measure	Formula
1	ϕ -coefficient	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$
2	Goodman-Kruskal's (λ)	$\frac{\sum_{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
3	Odds ratio (α)	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(\overline{A},B)}$
4	Yule's Q	$\frac{P(\overline{A},\overline{B})P(\overline{AB})-P(\overline{A},\overline{B})P(\overline{A},B)}{P(\overline{A},\overline{B})P(\overline{AB})+P(\overline{A},\overline{B})P(\overline{A},B)} = \frac{\alpha-1}{\alpha+1}$
5	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1}$
6	Kappa (κ)	$\frac{P(A,B)+P(\overline{A},\overline{B})-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A)P(B)-P(\overline{A})P(\overline{B})}$
7	Mutual Information (M)	$\frac{\sum_i \sum_j P(A_i, B_j) \log \frac{\sum_i \sum_j P(A_i, B_j)}{P(A_i)P(B_j)}}{\min(-\sum_i P(A_i) \log P(A_i), -\sum_j P(B_j) \log P(B_j))}$
8	J-Measure (J)	$\max\left(\overline{P(A,B)}\log(\frac{P(B A)}{P(B)}) + P(A\overline{B})\log(\frac{P(\overline{B} A)}{P(\overline{B})}), \bigcup_{i \in I} \right)$
		$P(A,B)\log(rac{P(A B)}{P(A)}) + P(\overline{A}B)\log(rac{P(\overline{A} B)}{P(\overline{A})}))$
9	Gini index (G)	$\Big \max \Big(P(A) [P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A}) [P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] \Big _{\exists}$
		$(P(B)^2 - P(\overline{B})^2, $
		$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}] \stackrel{\text{\tiny def}}{\underset{\text{\tiny def}}}{\underset{\text{\tiny def}}{\underset{\text{\tiny def}}}}}}}}}}}}}}})$
		$-P(A)^2 - P(\overline{A})^2$
10	Support (s)	P(A,B)
11	Confidence (c)	$\max(P(B A), P(A B))$
12	Laplace (L)	$\max\left(\frac{NP(A,B)+1}{NP(A)+2},\frac{NP(A,B)+1}{NP(B)+2}\right)$
13	Conviction (V)	$\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$
14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
15	cosine (IS)	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
16	${ m Piatetsky}-{ m Shapiro's}\ (PS)$	P(A,B) - P(A)P(B)
17	Certainty factor (F)	$\max\left(rac{P(B A)-P(B)}{1-P(B)},rac{P(A B)-P(A)}{1-P(A)} ight)$
18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A)-P(B),P(A B)-P(A))$

SUBJECTIVE INTERESTINGNESS MEASURE

Subjective measure:

- Rank patterns according to user's interpretation
 - A pattern is subjectively interesting if it contradicts the expectation of a user (Silberschatz & Tuzhilin)
 - A pattern is subjectively interesting if it is actionable (Silberschatz & Tuzhilin)

INTERESTINGNESS VIA UNEXPECTEDNESS

• Need to model expectation of users (domain knowledge)

- Pattern expected to be frequent
 Pattern expected to be infrequent
 Pattern found to be frequent
 Pattern found to be infrequent
 Image: Pattern found to be infrequent
 Image: Pattern found to be infrequent
- Need to combine expectation of users with evidence from data (i.e., extracted patterns)