CLUSTER ANALYSIS: BASIC CONCEPTS

Chiara Renso **KDD-LAB** ISTI- CNR, Pisa, Italy

DATA MINING

AND ALGORITHMS

WHAT IS CLUSTER ANALYSIS?

• Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

CLUSTERING: APPLICATION 1

- Market Segmentation:
 - Goal: subdivide a market into distinct subsets of customers where any subset may conceivably be selected as a market target to be reached with a distinct marketing mix.
 - Approach:
 - Collect different attributes of customers based on their geographical and lifestyle related information.
 - Find clusters of similar customers.
 - Measure the clustering quality by observing buying patterns of customers in same cluster vs. those from different clusters.

CLUSTERING: APPLICATION 2

• Document Clustering:

- Goal: To find groups of documents that are similar to each other based on the important terms appearing in them.
- Approach: To identify frequently occurring terms in each document. Form a similarity measure based on the frequencies of different terms. Use it to cluster.
- Gain: Information Retrieval can utilize the clusters to relate a new document or search term to clustered documents.

Illustrating Document Clustering

- Clustering Points: 3204 Articles of Los Angeles Times.
- Similarity Measure: How many words are common in these documents (after some word filtering).

Category	Total Articles	Correctly Placed
Financial	555	364
Foreign	341	260
National	273	36
Metro	943	746
Sports	738	573
Entertainment	354	278

SIMILARITY

Data Mining Course - UFPE - June 2012

SIMILARITY AND DISSIMILARITY

• Similarity

- Numerical measure of how alike two data objects are.
- Is higher when objects are more alike.
- Often falls in the range [0,1]
- Dissimilarity
 - Numerical measure of how different are two data objects
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

EUCLIDEAN DISTANCE

• Euclidean Distance

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

- Where *n* is the number of dimensions (attributes) and p_k and q_k are, respectively, the kth attributes (components) or data objects *p* and *q*.
- Standardization is necessary, if scales differ.

EUCLIDEAN DISTANCE

point	X	у
p1	0	2
p2	2	0
p3	3	1
p4	5	1

	p1	p2	p3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
p3	3.162	1.414	0	2
p 4	5.099	3.162	2	0

Distance Matrix

Data Mining Course - UFPE - June 2012

MINKOWSKI DISTANCE

 Minkowski Distance is a generalization of Euclidean Distance

$$dist = (\sum_{k=1}^{n} |p_{k} - q_{k}|^{r})^{r}$$

Where r is a parameter, n is the number of dimensions (attributes) and p_k and q_k are, respectively, the kth attributes (components) or data objects p and q.

MINKOWSKI DISTANCE: EXAMPLES

- r = 1. City block (Manhattan, taxicab, L₁ norm) distance.
 - A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors

• r = 2. Euclidean distance

- $r \rightarrow \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance.
 - This is the maximum difference between any component of the vectors
- Do not confuse *r* with *n*, i.e., all these distances are defined for all numbers of dimensions.

Data Mining Course - UFPE - June 2012

12

COMMON PROPERTIES OF A DISTANCE

- Distances, such as the Euclidean distance, have some well known properties.
 - 1. $d(p, q) \ge 0$ for all p and q and d(p, q) = 0 only if p = q. (Positive definiteness)
 - 2. d(p, q) = d(q, p) for all p and q. (Symmetry)
 - 3. $d(p, r) \le d(p, q) + d(q, r)$ for all points p, q, and r. (Triangle Inequality)

where d(p, q) is the distance (dissimilarity) between points (data objects), p and q.

• A distance that satisfies these properties is a metric

COMMON PROPERTIES OF A SIMILARITY

- Similarities, also have some well known properties.
 - 1. s(p, q) = 1 (or maximum similarity) only if p = q.
 - 2. s(p, q) = s(q, p) for all p and q. (Symmetry)

where s(p, q) is the similarity between points (data objects), p and q.

SIMILARITY BETWEEN BINARY VECTORS

- Common situation is that objects, *p* and *q*, have only binary attributes
- Compute similarities using the following quantities
 M₀₁ = the number of attributes where *p* was 0 and *q* was 1
 M₁₀ = the number of attributes where *p* was 1 and *q* was 0
 M₀₀ = the number of attributes where *p* was 0 and *q* was 0
 M₁₁ = the number of attributes where *p* was 1 and *q* was 1
- Simple Matching and Jaccard Coefficients
 SMC = number of matches / number of attributes
 = (M₁₁ + M₀₀) / (M₀₁ + M₁₀ + M₁₁ + M₀₀)
 - J = number of 11 matches / number of not-both-zero attributes values = (M $_{11})$ / (M $_{01}$ + M $_{10}$ + M $_{11})$

SMC VERSUS JACCARD: EXAMPLE

p = 1000000000 *q* = 0000001001

- M₀₁ = 2 (the number of attributes where p was 0 and q was 1)
 M₁₀ = 1 (the number of attributes where p was 1 and q was 0)
 M₀₀ = 7 (the number of attributes where p was 0 and q was 0)
- $M_{00} = 7$ (the number of attributes where p was 0 and q was 0)
- $M_{11} = 0$ (the number of attributes where p was 1 and q was 1)

COSINE SIMILARITY

17

CORRELATION

- Correlation measures the linear relationship between objects
- To compute correlation, we standardize data objects, p and q, and then take their dot product

$$p'_{k} = (p_{k} - mean(p))/std(p)$$

$$q'_{k} = (q_{k} - mean(q))/std(q)$$

$$correlation(p,q) = p' \cdot q'$$

VISUALLY EVALUATING CORRELATION

Scatter plots showing the similarity from –1 to 1.

DENSITY

• Density-based clustering require a notion of density

• Examples:

- Euclidean density
 - Euclidean density = number of points per unit volume
- Probability density
- Graph-based density

$EUCLIDEAN \ DENSITY-CENTER-BASED$

• Euclidean density is the number of points within a specified radius of the point

Figure 7.14. Illustration of center-based density.

APPLICATIONS OF CLUSTER ANALYSIS

Understanding

 Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations

Summarization

Reduce the size of large data sets

	Discovered Clusters	Industry Group
1	Applied-Matl-DOWN,B ay-Network-Down,3-COM-DOWN, C abletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, DSC-C omm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, Micron-Tech-DOWN,Tex as-Inst-Down, Tellabs-Inc-Down, Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, Sun-DOWN	Technology1-DOWN
2	Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, Computer-Assoc-DOWN,Circuit-City-DOWN, Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN	Technology2-DOWN
3	Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, MBNA-Corp-DOWN,Morgan-Stanley-DOWN	Financial-DOWN
4	Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, Schlumberger-UP	Oil-UP

Clustering precipitation in Australia

24

TYPES OF CLUSTERINGS

- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
 - A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

PARTITIONAL CLUSTERING

CHARACTERISTICS OF THE INPUT DATA ARE IMPORTANT

• Type of proximity or density measure

- This is a derived measure, but central to clustering

Sparseness

- Dictates type of similarity
- Adds to efficiency
- Attribute type
 - Dictates type of similarity
- Type of Data
 - Dictates type of similarity
 - Other characteristics, e.g., autocorrelation
- Dimensionality
- Noise and Outliers
- Type of Distribution

CLUSTERING ALGORITHMS

- K-means and its variants
- Hierarchical clustering
- Density-based clustering

K-MEANS CLUSTERING

- Partitional clustering approach
- Each cluster is associated with a <u>centroid</u> (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple

1: Select K points as the initial centroids.

2: repeat

- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

K-means Clustering - Details

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is O(n * K * I * d)
 - n = number of points, K = number of clusters,
 I = number of iterations, d = number of attributes

TWO DIFFERENT K-MEANS CLUSTERINGS

Data Mining Course - UFPE - June 2012

IMPORTANCE OF CHOOSING INITIAL CENTROIDS

IMPORTANCE OF CHOOSING INITIAL CENTROIDS ...

EVALUATING K-MEANS CLUSTERS

• Most common measure is Sum of Squared Errors (SSE)

- For each point, the error is the distance to the nearest cluster

o.

0.5

0.0

– To get SSE, we square these errors and sum them.

- x is a data point in cluster C_i and m_i is the representative point for cluster C_i

- Given two clusters, we can choose the one with the smallest for error
- One easy way to reduce SSE is to increase K, the number of clusters

◆ A good clustering with smaller K can have a lower SSE than a poor clustering with higher K

LIMITATIONS OF K-MEANS

• K-means has problems when clusters are of differing

- Sizes
- Densities
- Non-globular shapes

• K-means has problems when the data contains outliers.

Data Mining Course - UFPE - June 2012

Original Points

K-means (3 Clusters)

Original Points

K-means (2 Clusters)

HIERARCHICAL CLUSTERING

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

STRENGTHS OF HIERARCHICAL CLUSTERING

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

42

HIERARCHICAL CLUSTERING

• Two main types of hierarchical clustering

- Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
- Divisive:
 - ◆ Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance (proximity) matrix
 - Merge or split one cluster at a time

AGGLOMERATIVE CLUSTERING ALGORITHM

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - Compute the proximity matrix
 - Let each data point be a cluster
 - Repeat
 - Merge the two closest clusters
 - Update the proximity matrix
 - Until only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Data Mining Course - UFPE - June 2012

45

HIERARCHICAL CLUSTERING: TIME AND SPACE REQUIREMENTS

 $O(N^2)$ space

O(N³) time in many cases

- There are N steps and at each step the proximity matrix (size: O(N²)) must be updated and searched
- Complexity can be reduced to $O(N^2 \log(N)$) time for some approaches

HIERARCHICAL CLUSTERING: PROBLEMS AND LIMITATIONS

- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and convex shapes
 - Breaking large clusters

47

DBSCAN

- DBSCAN is a density-based algorithm.
 - Density = number of points within a specified radius (Eps)
 - A point is a core point if it has more than a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
 - A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point or a border point.

DBSCAN: CORE, BORDER, AND NOISE POINTS

Data Mining Course - UFPE - June 2012

DBSCAN ALGORITHM

• Eliminate noise points

• Perform clustering on the remaining points

Algorithm 8.4 DBSCAN algorithm.

- Algorithm 8.4 DBSCAN algorithm.
 Output of Course UFPE June 2015

 1: Label all points as core, border, or noise points.
 1

 2: Eliminate noise points.
 1

 3: Put an edge between all core points that are within *Eps* of each other.
 1

 4: Make each group of connected core points into a separate cluster.
 1

 5: Assign each border point to one of the clusters of its associated core points
 1

Complexity is $O(n^2)$ in the worst case. With low dimensionality and good data structure can reduce to $O(m \log m)$

WHEN DBSCAN WORKS WELL

Original Points

- Resistant to Noise
- Can handle clusters of different shapes and sizes

WHEN DBSCAN DOES NOT WORK WELL

Original Points

- Varying densities
- High-dimensional data

(MinPts=4, Eps=9.75).

CLUSTER VALIDITY

- For supervised classification we have a variety of measures to evaluate how good our model is
 - Accuracy, precision, recall
- For cluster analysis, the analogous question is how to evaluate the "goodness" of the resulting clusters?
- But "clusters are in the eye of the beholder"!
- Then why do we want to evaluate them?
 - To avoid finding patterns in noise
 - To compare clustering algorithms
 - To compare two sets of clusters
 - To compare two clusters

DIFFERENT ASPECTS OF CLUSTER VALIDATION

- Determining the clustering tendency of a set of data, i.e., distinguishing whether non-random structure actually exists in the data.
- 1. Comparing the results of a cluster analysis to externally known results, e.g., to externally given class labels.
- Evaluating how well the results of a cluster analysis fit the data without reference to external information - only the data
- 1. Comparing the results of two different sets of cluster analyses to determine which is better.
- 2. Determining the 'correct' number of clusters.

INTERNAL MEASURES: SSE

- Clusters in more complicated figures aren't well separated
- Internal Index: Used to measure the goodness of a clustering structure without respect to external information
 - Sum of Square Error
- SSE is good for comparing two clusterings or two clusters (average SSE).
- Can also be used to estimate the number of clusters

INTERNAL MEASURES: COHESION AND SEPARATION

- Cluster Cohesion: Measures how closely related are objects in a cluster
 - Example: SSE
- Cluster Separation: Measure how distinct or wellseparated a cluster is from other clusters
- Example: Squared Error
 - Cohesion is measured by the within cluster sum of squares (SSE) $WSS = \sum \sum (x - m_i)^2$

- Separation is measured by the between cluster sum of squares

$$BSS = \sum_{i} |C_{i}| (m - m_{i})^{2}$$

Where $|C_i|$ is the size of cluster i

57

FINAL COMMENT ON CLUSTER VALIDITY

- "The validation of clustering structures is the most difficult and frustrating part of cluster analysis.
- Without a strong effort in this direction, cluster analysis will remain a black art accessible only to those true believers who have experience and great courage."

• Algorithms for Clustering Data, Jain and Dubes