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WHAT IS CLUSTER ANALYSIS? 

  Finding groups of objects such that the objects in a group 
will be similar (or related) to one another and different from 
(or unrelated to) the objects in other groups 

Inter-cluster 
distances are 
maximized 

Intra-cluster 
distances are 

minimized 
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CLUSTERING: APPLICATION 1 

  Market Segmentation: 
  Goal: subdivide a market into distinct subsets of 

customers where any subset may conceivably be 
selected as a market target to be reached with a 
distinct marketing mix. 

  Approach:  
  Collect different attributes of customers based on their 

geographical and lifestyle related information. 
  Find clusters of similar customers. 
  Measure the clustering quality by observing buying 

patterns of customers in same cluster vs. those from 
different clusters.  
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CLUSTERING: APPLICATION 2 

  Document Clustering: 
  Goal: To find groups of documents that are similar to 

each other based on the important terms appearing 
in them. 

  Approach: To identify frequently occurring terms in 
each document. Form a similarity measure based on 
the frequencies of different terms. Use it to cluster. 

  Gain: Information Retrieval can utilize the clusters 
to relate a new document or search term to clustered 
documents. 
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ILLUSTRATING DOCUMENT CLUSTERING 

  Clustering Points: 3204 Articles of Los Angeles Times. 
  Similarity Measure: How many words are common in 

these documents (after some word filtering). 
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SIMILARITY 
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SIMILARITY AND DISSIMILARITY 

  Similarity 
–  Numerical measure of how alike two data objects are. 
–  Is higher when objects are more alike. 
–  Often falls in the range [0,1] 

  Dissimilarity 
–  Numerical measure of how different are two data objects 
–  Lower when objects are more alike 
–  Minimum dissimilarity is often 0 
–  Upper limit varies 

  Proximity refers to a similarity or dissimilarity 
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EUCLIDEAN DISTANCE 

  Euclidean Distance 

     Where n is the number of dimensions (attributes) and 
pk and qk are, respectively, the kth attributes 
(components) or data objects p and q. 

  Standardization is necessary, if scales differ. € 

dist = (pk − qk )
2

k=1

n

∑
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EUCLIDEAN DISTANCE 

Distance Matrix 
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MINKOWSKI DISTANCE 

  Minkowski Distance is a generalization of Euclidean 
Distance 

Where r is a parameter, n is the number of dimensions 
(attributes) and pk and qk are, respectively, the kth attributes 
(components) or data objects p and q. 

€ 

dist = ( | pk − qk |
r

k=1

n

∑ )

1
r
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MINKOWSKI DISTANCE: EXAMPLES 

  r = 1.  City block (Manhattan, taxicab, L1 
norm) distance.  

–  A common example of this is the Hamming distance, 
which is just the number of bits that are different 
between two binary vectors 

  r = 2.  Euclidean distance 

  r → ∞.  “supremum” (Lmax norm, L∞ norm) 
distance.  

–  This is the maximum difference between any component 
of the vectors 

  Do not confuse r with n, i.e., all these 
distances are defined for all numbers of 
dimensions. 11 
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COMMON PROPERTIES OF A DISTANCE 

  Distances, such as the Euclidean distance, have 
some well known properties. 

1.  d(p, q) ≥ 0   for all p and q and d(p, q) = 0 only if  
p = q. (Positive definiteness) 

2.  d(p, q) = d(q, p)   for all p and q. (Symmetry) 
3.  d(p, r) ≤ d(p, q) + d(q, r)   for all points p, q, and r.   

(Triangle Inequality) 

 where d(p, q) is the distance (dissimilarity) 
between points (data objects), p and q. 

  A distance that satisfies these properties is a 
metric 
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COMMON PROPERTIES OF A SIMILARITY 

  Similarities, also have some well known properties. 

1.  s(p, q) = 1 (or maximum similarity) only if p = q.  

2.  s(p, q) = s(q, p)   for all p and q. (Symmetry) 

 where s(p, q) is the similarity between points (data 
objects), p and q. 
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SIMILARITY BETWEEN BINARY VECTORS 

  Common situation is that objects, p and q, have 
only binary attributes 

  Compute similarities using the following quantities 
  M01 = the number of attributes where p was 0 and q was 1 
  M10 = the number of attributes where p  was 1 and q was 0 
  M00 = the number of attributes where p  was 0 and q was 0 
  M11 = the number of attributes where p  was 1 and q  was 1 

  Simple Matching and Jaccard Coefficients  
 SMC =  number of matches / number of attributes  

            =  (M11 + M00) / (M01 + M10 + M11 + M00) 

 J = number of 11 matches / number of not-both-zero attributes values 
       = (M11) / (M01 + M10 + M11)  
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SMC VERSUS JACCARD: EXAMPLE 

  p =  1 0 0 0 0 0 0 0 0 0       
  q =  0 0 0 0 0 0 1 0 0 1  

  M01 = 2   (the number of attributes where p was 0 and q was 1) 
  M10 = 1   (the number of attributes where p was 1 and q was 0) 
  M00 = 7   (the number of attributes where p was 0 and q was 0) 
  M11 = 0   (the number of attributes where p was 1 and q was 1) 

SMC = (M11 + M00)/(M01 + M10 + M11 + M00) = (0+7) / 
(2+1+0+7) = 0.7  

J = (M11) / (M01 + M10 + M11) = 0 / (2 + 1 + 0) = 0  
15 

D
ata M

ining C
ourse - U

FPE - June 2012 



COSINE SIMILARITY 

  If d1 and d2 are two document vectors, then 
             cos( d1, d2 ) =  (d1 • d2) / ||d1|| ||d2|| ,  
   where • indicates vector dot product and || d || is  the   length of vector d.   

  Example:  

   d1 =  3 2 0 5 0 0 0 2 0 0   
    d2 =  1 0 0 0 0 0 0 1 0 2  

    d1 • d2=  3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5 

   ||d1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5 =  (42) 0.5 = 6.481 
    ||d2|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 0.5 = (6) 0.5 = 2.245 

     cos( d1, d2 ) = .3150 

A.B = ||A|| ||
B||  cos θ 

Pitagora Theorem 
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CORRELATION 

  Correlation measures the linear relationship between 
objects 

  To compute correlation, we standardize data objects, p 
and q, and then take their dot product 

€ 

pk
' = (pk −mean(p)) /std(p)

€ 

qk
' = (qk −mean(q)) /std(q)

€ 

correlation(p,q) = p' ⋅ q'
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VISUALLY EVALUATING CORRELATION 

Scatter plots 
showing the 
similarity 
from –1 to 1. 
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DENSITY 

  Density-based clustering require a notion of density 

  Examples: 
–  Euclidean density 

  Euclidean density = number of points per unit volume 

–  Probability density  

–  Graph-based density 
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EUCLIDEAN DENSITY – CENTER-BASED 

  Euclidean density is the number of points within a 
specified radius of the point 
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CLUSTERING TECHNIQUES 
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APPLICATIONS OF CLUSTER ANALYSIS 

  Understanding 
–  Group related documents 

for browsing, group genes 
and proteins that have 
similar functionality, or 
group stocks with similar 
price fluctuations 

  Summarization 
–  Reduce the size of large 

data sets 

Clustering precipitation 
in Australia 



NOTION OF A CLUSTER CAN BE AMBIGUOUS 

How many clusters? 

Four Clusters  Two Clusters  

Six Clusters  
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TYPES OF CLUSTERINGS 

  A clustering is a set of clusters 

  Important distinction between hierarchical and 
partitional sets of clusters  

  Partitional Clustering 
–  A division data objects into non-overlapping subsets 

(clusters) such that each data object is in exactly one subset 

  Hierarchical clustering 
–  A set of nested clusters organized as a hierarchical tree  
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PARTITIONAL CLUSTERING 

Original Points A Partitional  Clustering 
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HIERARCHICAL CLUSTERING 

Hierarchical Clustering Dendrogram 
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CHARACTERISTICS OF THE INPUT DATA ARE IMPORTANT 

  Type of proximity or density measure 
–  This is a derived measure, but central to clustering   

  Sparseness 
–  Dictates type of similarity 
–  Adds to efficiency 

  Attribute type 
–  Dictates type of similarity 

  Type of Data 
–  Dictates type of similarity 
–  Other characteristics, e.g., autocorrelation 

  Dimensionality 
  Noise and Outliers 
  Type of Distribution 
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CLUSTERING ALGORITHMS 

  K-means and its variants 

  Hierarchical clustering 

  Density-based clustering 
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K-MEANS CLUSTERING 

  Partitional clustering approach  
  Each cluster is associated with a centroid (center point)  
  Each point is assigned to the cluster with the closest 

centroid 
  Number of clusters, K, must be specified 
  The basic algorithm is very simple 
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K-MEANS CLUSTERING – DETAILS 

  Initial centroids are often chosen randomly. 
–  Clusters produced vary from one run to another. 

  The centroid is (typically) the mean of the points in the 
cluster. 

  ‘Closeness’ is measured by Euclidean distance, cosine 
similarity, correlation, etc. 

  K-means will converge for common similarity measures 
mentioned above. 

  Most of the convergence happens in the first few 
iterations. 

–  Often the stopping condition is changed to ‘Until relatively few 
points change clusters’ 

  Complexity is O( n * K * I * d ) 
–  n = number of points, K = number of clusters,  

I = number of iterations, d = number of attributes 
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TWO DIFFERENT K-MEANS CLUSTERINGS 

Sub-optimal Clustering Optimal Clustering 

Original Points 
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IMPORTANCE OF CHOOSING INITIAL CENTROIDS 
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IMPORTANCE OF CHOOSING INITIAL CENTROIDS … 
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EVALUATING K-MEANS CLUSTERS 

  Most common measure is Sum of Squared Errors (SSE) 
–  For each point, the error is the distance to the nearest cluster 
–  To get SSE, we square these errors and sum them. 

–  x is a data point in cluster Ci and mi is  
the representative point for cluster Ci  

–  Given two clusters, we can choose the one with the smallest 
error 

–  One easy way to reduce SSE is to increase K, the number of 
clusters 
  A good clustering with smaller K can have a lower SSE than a 
poor clustering with higher K 

€ 

SSE = dist2 (mi, x)
x∈Ci

∑
i=1

K

∑
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LIMITATIONS OF K-MEANS 

  K-means has problems when clusters are of differing  
–  Sizes 
–  Densities 
–  Non-globular shapes 

  K-means has problems when the data contains outliers. 
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LIMITATIONS OF K-MEANS: DIFFERING SIZES 

Original Points K-means (3 Clusters) 
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LIMITATIONS OF K-MEANS: DIFFERING DENSITY 

Original Points K-means (3 Clusters) 
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LIMITATIONS OF K-MEANS: NON-GLOBULAR SHAPES 

Original Points K-means (2 Clusters) 
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OVERCOMING K-MEANS LIMITATIONS 

Original Points     K-means Clusters 

One solution is to use many clusters. 
Find parts of clusters, but need to put together. 39 
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HIERARCHICAL CLUSTERING  

  Produces a set of nested clusters organized as a 
hierarchical tree 

  Can be visualized as a dendrogram 
–  A tree like diagram that records the sequences of merges or 

splits 
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STRENGTHS OF HIERARCHICAL CLUSTERING 

  Do not have to assume any particular number of 
clusters 

–  Any desired number of clusters can be obtained by ‘cutting’ 
the dendogram at the proper level 

  They may correspond to meaningful taxonomies 
–  Example in biological sciences (e.g., animal kingdom, 

phylogeny reconstruction, …) 
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HIERARCHICAL CLUSTERING 

  Two main types of hierarchical clustering 
–  Agglomerative:   

  Start with the points as individual clusters 
  At each step, merge the closest pair of clusters until only one 
cluster (or k clusters) left 

–  Divisive:   
  Start with one, all-inclusive cluster  
  At each step, split a cluster until each cluster contains a point (or 
there are k clusters) 

  Traditional hierarchical algorithms use a similarity or 
distance (proximity) matrix 

–  Merge or split one cluster at a time 
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AGGLOMERATIVE CLUSTERING ALGORITHM 
  More popular hierarchical clustering technique 

  Basic algorithm is straightforward 

•   Compute the proximity matrix 
•   Let each data point be a cluster 
•   Repeat 
•   Merge the two closest clusters 
•   Update the proximity matrix 
•   Until only a single cluster remains 

  Key operation is the computation of the proximity of two 
clusters 

–  Different approaches to defining the distance between 
clusters distinguish the different algorithms 

Similarity? 
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HIERARCHICAL CLUSTERING: MIN 

Nested Clusters Dendrogram 

1 

2 
3 

4 

5 

6 

1 
2 

3 

4 

5 
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HIERARCHICAL CLUSTERING:  TIME AND SPACE REQUIREMENTS 

O(N2) space  

O(N3) time in many cases 
–  There are N steps and at each step the proximity matrix 

(size: O(N2)) must be updated and searched 
–  Complexity can be reduced to O(N2 log(N) ) time for some 

approaches 

45 

D
ata M

ining C
ourse - U

FPE - June 2012 



HIERARCHICAL CLUSTERING:  PROBLEMS AND LIMITATIONS 

  Once a decision is made to combine two clusters, it 
cannot be undone 

  No objective function is directly minimized 

  Different schemes have problems with one or more of 
the following: 

–  Sensitivity to noise and outliers 
–  Difficulty handling different sized clusters and convex 

shapes 
–  Breaking large clusters 
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DBSCAN 

  DBSCAN is a density-based algorithm. 
–  Density = number of points within a specified radius 

(Eps) 

–  A point is a core point if it has more than a specified 
number of points (MinPts) within Eps  
  These are points that are at the interior of a cluster 

–  A border point has fewer than MinPts within Eps, but is 
in the neighborhood of a core point 

–  A noise point is any point that is not a core point or a 
border point.  
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DBSCAN: CORE, BORDER, AND NOISE POINTS 
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DBSCAN ALGORITHM 

  Eliminate noise points 
  Perform clustering on the remaining points 

Complexity is O(n2) in the worst case. With low dimensionality 
and good data structure can reduce to O(m log m) 49 
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DBSCAN: CORE, BORDER AND NOISE POINTS 

Original Points Point types: core, 
border and noise 

Eps = 10, MinPts = 4 50 
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WHEN DBSCAN WORKS WELL 

Original Points Clusters 

•  Resistant to Noise 

•  Can handle clusters of different shapes and sizes 51 
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WHEN DBSCAN DOES NOT WORK WELL 

Original Points 

(MinPts=4, Eps=9.75).  

 (MinPts=4, Eps=9.92) 

•  Varying densities 

•  High-dimensional data 52 
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CLUSTER VALIDITY  

  For supervised classification we have a variety of 
measures to evaluate how good our model is 

–  Accuracy, precision, recall 

  For cluster analysis, the analogous question is how to 
evaluate the “goodness” of the resulting clusters? 

  But “clusters are in the eye of the beholder”!  

  Then why do we want to evaluate them? 
–  To avoid finding patterns in noise 
–  To compare clustering algorithms 
–  To compare two sets of clusters 
–  To compare two clusters 
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DIFFERENT ASPECTS OF CLUSTER VALIDATION 

  Determining the clustering tendency of a set of data, i.e., distinguishing 
whether non-random structure actually exists in the data.  

1.  Comparing the results of a cluster analysis to externally known results, 
e.g., to externally given class labels. 

  Evaluating how well the results of a cluster analysis fit the data without 
reference to external information -  only the data 

1.  Comparing the results of two different sets of cluster analyses to 
determine which is better. 

2.  Determining the ‘correct’ number of clusters. 
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INTERNAL MEASURES: SSE 

  Clusters in more complicated figures aren’t well separated 
  Internal Index:  Used to measure the goodness of a clustering 

structure without respect to external information 
–  Sum of Square Error 

  SSE is good for comparing two clusterings or two clusters 
(average SSE). 

  Can also be used to estimate the number of clusters 
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INTERNAL MEASURES: COHESION AND SEPARATION 

  Cluster Cohesion: Measures how closely related 
are objects in a cluster 

–  Example: SSE 

  Cluster Separation: Measure how distinct or well-
separated a cluster is from other clusters 

  Example: Squared Error 
–  Cohesion is measured by the within cluster sum of squares (SSE) 

–  Separation is measured by the between cluster sum of squares 

–  Where |Ci| is the size of cluster i  

€ 

WSS = (x −mi )
2

x∈Ci

∑
i
∑

€ 

BSS = Ci| |(m −mi )
2

i
∑
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FINAL COMMENT ON CLUSTER VALIDITY 

     “The validation of clustering structures is the 
most difficult and frustrating part of cluster 
analysis.  

     Without a strong effort in this direction, cluster 
analysis will remain a black art accessible only to 
those true believers who have experience and 
great courage.” 

  Algorithms for Clustering Data, Jain and Dubes 
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