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WHAT IS CLUSTER ANALYSIS? 

  Finding groups of objects such that the objects in a group 
will be similar (or related) to one another and different from 
(or unrelated to) the objects in other groups 

Inter-cluster 
distances are 
maximized 

Intra-cluster 
distances are 

minimized 
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CLUSTERING: APPLICATION 1 

  Market Segmentation: 
  Goal: subdivide a market into distinct subsets of 

customers where any subset may conceivably be 
selected as a market target to be reached with a 
distinct marketing mix. 

  Approach:  
  Collect different attributes of customers based on their 

geographical and lifestyle related information. 
  Find clusters of similar customers. 
  Measure the clustering quality by observing buying 

patterns of customers in same cluster vs. those from 
different clusters.  
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CLUSTERING: APPLICATION 2 

  Document Clustering: 
  Goal: To find groups of documents that are similar to 

each other based on the important terms appearing 
in them. 

  Approach: To identify frequently occurring terms in 
each document. Form a similarity measure based on 
the frequencies of different terms. Use it to cluster. 

  Gain: Information Retrieval can utilize the clusters 
to relate a new document or search term to clustered 
documents. 
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ILLUSTRATING DOCUMENT CLUSTERING 

  Clustering Points: 3204 Articles of Los Angeles Times. 
  Similarity Measure: How many words are common in 

these documents (after some word filtering). 
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SIMILARITY 
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SIMILARITY AND DISSIMILARITY 

  Similarity 
–  Numerical measure of how alike two data objects are. 
–  Is higher when objects are more alike. 
–  Often falls in the range [0,1] 

  Dissimilarity 
–  Numerical measure of how different are two data objects 
–  Lower when objects are more alike 
–  Minimum dissimilarity is often 0 
–  Upper limit varies 

  Proximity refers to a similarity or dissimilarity 
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EUCLIDEAN DISTANCE 

  Euclidean Distance 

     Where n is the number of dimensions (attributes) and 
pk and qk are, respectively, the kth attributes 
(components) or data objects p and q. 

  Standardization is necessary, if scales differ. € 

dist = (pk − qk )
2

k=1

n

∑
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EUCLIDEAN DISTANCE 

Distance Matrix 
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MINKOWSKI DISTANCE 

  Minkowski Distance is a generalization of Euclidean 
Distance 

Where r is a parameter, n is the number of dimensions 
(attributes) and pk and qk are, respectively, the kth attributes 
(components) or data objects p and q. 

€ 

dist = ( | pk − qk |
r

k=1

n

∑ )

1
r
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MINKOWSKI DISTANCE: EXAMPLES 

  r = 1.  City block (Manhattan, taxicab, L1 
norm) distance.  

–  A common example of this is the Hamming distance, 
which is just the number of bits that are different 
between two binary vectors 

  r = 2.  Euclidean distance 

  r → ∞.  “supremum” (Lmax norm, L∞ norm) 
distance.  

–  This is the maximum difference between any component 
of the vectors 

  Do not confuse r with n, i.e., all these 
distances are defined for all numbers of 
dimensions. 11 
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COMMON PROPERTIES OF A DISTANCE 

  Distances, such as the Euclidean distance, have 
some well known properties. 

1.  d(p, q) ≥ 0   for all p and q and d(p, q) = 0 only if  
p = q. (Positive definiteness) 

2.  d(p, q) = d(q, p)   for all p and q. (Symmetry) 
3.  d(p, r) ≤ d(p, q) + d(q, r)   for all points p, q, and r.   

(Triangle Inequality) 

 where d(p, q) is the distance (dissimilarity) 
between points (data objects), p and q. 

  A distance that satisfies these properties is a 
metric 
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COMMON PROPERTIES OF A SIMILARITY 

  Similarities, also have some well known properties. 

1.  s(p, q) = 1 (or maximum similarity) only if p = q.  

2.  s(p, q) = s(q, p)   for all p and q. (Symmetry) 

 where s(p, q) is the similarity between points (data 
objects), p and q. 

13 

D
ata M

ining C
ourse - U

FPE - June 2012 



SIMILARITY BETWEEN BINARY VECTORS 

  Common situation is that objects, p and q, have 
only binary attributes 

  Compute similarities using the following quantities 
  M01 = the number of attributes where p was 0 and q was 1 
  M10 = the number of attributes where p  was 1 and q was 0 
  M00 = the number of attributes where p  was 0 and q was 0 
  M11 = the number of attributes where p  was 1 and q  was 1 

  Simple Matching and Jaccard Coefficients  
 SMC =  number of matches / number of attributes  

            =  (M11 + M00) / (M01 + M10 + M11 + M00) 

 J = number of 11 matches / number of not-both-zero attributes values 
       = (M11) / (M01 + M10 + M11)  
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SMC VERSUS JACCARD: EXAMPLE 

  p =  1 0 0 0 0 0 0 0 0 0       
  q =  0 0 0 0 0 0 1 0 0 1  

  M01 = 2   (the number of attributes where p was 0 and q was 1) 
  M10 = 1   (the number of attributes where p was 1 and q was 0) 
  M00 = 7   (the number of attributes where p was 0 and q was 0) 
  M11 = 0   (the number of attributes where p was 1 and q was 1) 

SMC = (M11 + M00)/(M01 + M10 + M11 + M00) = (0+7) / 
(2+1+0+7) = 0.7  

J = (M11) / (M01 + M10 + M11) = 0 / (2 + 1 + 0) = 0  
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COSINE SIMILARITY 

  If d1 and d2 are two document vectors, then 
             cos( d1, d2 ) =  (d1 • d2) / ||d1|| ||d2|| ,  
   where • indicates vector dot product and || d || is  the   length of vector d.   

  Example:  

   d1 =  3 2 0 5 0 0 0 2 0 0   
    d2 =  1 0 0 0 0 0 0 1 0 2  

    d1 • d2=  3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5 

   ||d1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5 =  (42) 0.5 = 6.481 
    ||d2|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 0.5 = (6) 0.5 = 2.245 

     cos( d1, d2 ) = .3150 

A.B = ||A|| ||
B||  cos θ 

Pitagora Theorem 
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CORRELATION 

  Correlation measures the linear relationship between 
objects 

  To compute correlation, we standardize data objects, p 
and q, and then take their dot product 

€ 

pk
' = (pk −mean(p)) /std(p)

€ 

qk
' = (qk −mean(q)) /std(q)

€ 

correlation(p,q) = p' ⋅ q'
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VISUALLY EVALUATING CORRELATION 

Scatter plots 
showing the 
similarity 
from –1 to 1. 
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DENSITY 

  Density-based clustering require a notion of density 

  Examples: 
–  Euclidean density 

  Euclidean density = number of points per unit volume 

–  Probability density  

–  Graph-based density 
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EUCLIDEAN DENSITY – CENTER-BASED 

  Euclidean density is the number of points within a 
specified radius of the point 
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CLUSTERING TECHNIQUES 
21 

D
ata M

ining C
ourse - U

FPE - June 2012 



APPLICATIONS OF CLUSTER ANALYSIS 

  Understanding 
–  Group related documents 

for browsing, group genes 
and proteins that have 
similar functionality, or 
group stocks with similar 
price fluctuations 

  Summarization 
–  Reduce the size of large 

data sets 

Clustering precipitation 
in Australia 



NOTION OF A CLUSTER CAN BE AMBIGUOUS 

How many clusters? 

Four Clusters  Two Clusters  

Six Clusters  
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TYPES OF CLUSTERINGS 

  A clustering is a set of clusters 

  Important distinction between hierarchical and 
partitional sets of clusters  

  Partitional Clustering 
–  A division data objects into non-overlapping subsets 

(clusters) such that each data object is in exactly one subset 

  Hierarchical clustering 
–  A set of nested clusters organized as a hierarchical tree  
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PARTITIONAL CLUSTERING 

Original Points A Partitional  Clustering 
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HIERARCHICAL CLUSTERING 

Hierarchical Clustering Dendrogram 
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CHARACTERISTICS OF THE INPUT DATA ARE IMPORTANT 

  Type of proximity or density measure 
–  This is a derived measure, but central to clustering   

  Sparseness 
–  Dictates type of similarity 
–  Adds to efficiency 

  Attribute type 
–  Dictates type of similarity 

  Type of Data 
–  Dictates type of similarity 
–  Other characteristics, e.g., autocorrelation 

  Dimensionality 
  Noise and Outliers 
  Type of Distribution 
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CLUSTERING ALGORITHMS 

  K-means and its variants 

  Hierarchical clustering 

  Density-based clustering 
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K-MEANS CLUSTERING 

  Partitional clustering approach  
  Each cluster is associated with a centroid (center point)  
  Each point is assigned to the cluster with the closest 

centroid 
  Number of clusters, K, must be specified 
  The basic algorithm is very simple 
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K-MEANS CLUSTERING – DETAILS 

  Initial centroids are often chosen randomly. 
–  Clusters produced vary from one run to another. 

  The centroid is (typically) the mean of the points in the 
cluster. 

  ‘Closeness’ is measured by Euclidean distance, cosine 
similarity, correlation, etc. 

  K-means will converge for common similarity measures 
mentioned above. 

  Most of the convergence happens in the first few 
iterations. 

–  Often the stopping condition is changed to ‘Until relatively few 
points change clusters’ 

  Complexity is O( n * K * I * d )‏ 
–  n = number of points, K = number of clusters,  

I = number of iterations, d = number of attributes 
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TWO DIFFERENT K-MEANS CLUSTERINGS 

Sub-optimal Clustering Optimal Clustering 

Original Points 
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IMPORTANCE OF CHOOSING INITIAL CENTROIDS 

32 

D
ata M

ining C
ourse - U

FPE - June 2012 



IMPORTANCE OF CHOOSING INITIAL CENTROIDS … 

33 

D
ata M

ining C
ourse - U

FPE - June 2012 



EVALUATING K-MEANS CLUSTERS 

  Most common measure is Sum of Squared Errors (SSE)‏ 
–  For each point, the error is the distance to the nearest cluster 
–  To get SSE, we square these errors and sum them. 

–  x is a data point in cluster Ci and mi is  
the representative point for cluster Ci  

–  Given two clusters, we can choose the one with the smallest 
error 

–  One easy way to reduce SSE is to increase K, the number of 
clusters 
  A good clustering with smaller K can have a lower SSE than a 
poor clustering with higher K 

€ 

SSE = dist2 (mi, x)
x∈Ci

∑
i=1

K

∑
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LIMITATIONS OF K-MEANS 

  K-means has problems when clusters are of differing  
–  Sizes 
–  Densities 
–  Non-globular shapes 

  K-means has problems when the data contains outliers. 

35 

D
ata M

ining C
ourse - U

FPE - June 2012 



LIMITATIONS OF K-MEANS: DIFFERING SIZES 

Original Points K-means (3 Clusters)‏ 
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LIMITATIONS OF K-MEANS: DIFFERING DENSITY 

Original Points K-means (3 Clusters)‏ 
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LIMITATIONS OF K-MEANS: NON-GLOBULAR SHAPES 

Original Points K-means (2 Clusters)‏ 
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OVERCOMING K-MEANS LIMITATIONS 

Original Points     K-means Clusters 

One solution is to use many clusters. 
Find parts of clusters, but need to put together. 39 
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HIERARCHICAL CLUSTERING  

  Produces a set of nested clusters organized as a 
hierarchical tree 

  Can be visualized as a dendrogram 
–  A tree like diagram that records the sequences of merges or 

splits 
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STRENGTHS OF HIERARCHICAL CLUSTERING 

  Do not have to assume any particular number of 
clusters 

–  Any desired number of clusters can be obtained by ‘cutting’ 
the dendogram at the proper level 

  They may correspond to meaningful taxonomies 
–  Example in biological sciences (e.g., animal kingdom, 

phylogeny reconstruction, …)‏ 
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HIERARCHICAL CLUSTERING 

  Two main types of hierarchical clustering 
–  Agglomerative:   

  Start with the points as individual clusters 
  At each step, merge the closest pair of clusters until only one 
cluster (or k clusters) left 

–  Divisive:   
  Start with one, all-inclusive cluster  
  At each step, split a cluster until each cluster contains a point (or 
there are k clusters)‏ 

  Traditional hierarchical algorithms use a similarity or 
distance (proximity) matrix 

–  Merge or split one cluster at a time 
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AGGLOMERATIVE CLUSTERING ALGORITHM 
  More popular hierarchical clustering technique 

  Basic algorithm is straightforward 

•   Compute the proximity matrix 
•   Let each data point be a cluster 
•   Repeat 
•   Merge the two closest clusters 
•   Update the proximity matrix 
•   Until only a single cluster remains 

  Key operation is the computation of the proximity of two 
clusters 

–  Different approaches to defining the distance between 
clusters distinguish the different algorithms 

Similarity? 
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HIERARCHICAL CLUSTERING: MIN 

Nested Clusters Dendrogram 

1 

2 
3 

4 

5 

6 

1 
2 

3 

4 

5 
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HIERARCHICAL CLUSTERING:  TIME AND SPACE REQUIREMENTS 

O(N2) space  

O(N3) time in many cases 
–  There are N steps and at each step the proximity matrix 

(size: O(N2)) must be updated and searched 
–  Complexity can be reduced to O(N2 log(N) ) time for some 

approaches 
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HIERARCHICAL CLUSTERING:  PROBLEMS AND LIMITATIONS 

  Once a decision is made to combine two clusters, it 
cannot be undone 

  No objective function is directly minimized 

  Different schemes have problems with one or more of 
the following: 

–  Sensitivity to noise and outliers 
–  Difficulty handling different sized clusters and convex 

shapes 
–  Breaking large clusters 
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DBSCAN 

  DBSCAN is a density-based algorithm. 
–  Density = number of points within a specified radius 

(Eps)‏ 

–  A point is a core point if it has more than a specified 
number of points (MinPts) within Eps  
  These are points that are at the interior of a cluster 

–  A border point has fewer than MinPts within Eps, but is 
in the neighborhood of a core point 

–  A noise point is any point that is not a core point or a 
border point.  
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DBSCAN: CORE, BORDER, AND NOISE POINTS 
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DBSCAN ALGORITHM 

  Eliminate noise points 
  Perform clustering on the remaining points 

Complexity is O(n2) in the worst case. With low dimensionality 
and good data structure can reduce to O(m log m) 49 
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DBSCAN: CORE, BORDER AND NOISE POINTS 

Original Points Point types: core, 
border and noise 

Eps = 10, MinPts = 4 50 
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WHEN DBSCAN WORKS WELL 

Original Points Clusters 

•  Resistant to Noise 

•  Can handle clusters of different shapes and sizes 51 
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WHEN DBSCAN DOES NOT WORK WELL 

Original Points 

(MinPts=4, Eps=9.75).  

 (MinPts=4, Eps=9.92)‏ 

•  Varying densities 

•  High-dimensional data 52 
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CLUSTER VALIDITY  

  For supervised classification we have a variety of 
measures to evaluate how good our model is 

–  Accuracy, precision, recall 

  For cluster analysis, the analogous question is how to 
evaluate the “goodness” of the resulting clusters? 

  But “clusters are in the eye of the beholder”!  

  Then why do we want to evaluate them? 
–  To avoid finding patterns in noise 
–  To compare clustering algorithms 
–  To compare two sets of clusters 
–  To compare two clusters 
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DIFFERENT ASPECTS OF CLUSTER VALIDATION 

  Determining the clustering tendency of a set of data, i.e., distinguishing 
whether non-random structure actually exists in the data.  

1.  Comparing the results of a cluster analysis to externally known results, 
e.g., to externally given class labels. 

  Evaluating how well the results of a cluster analysis fit the data without 
reference to external information -  only the data 

1.  Comparing the results of two different sets of cluster analyses to 
determine which is better. 

2.  Determining the ‘correct’ number of clusters. 
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INTERNAL MEASURES: SSE 

  Clusters in more complicated figures aren’t well separated 
  Internal Index:  Used to measure the goodness of a clustering 

structure without respect to external information 
–  Sum of Square Error 

  SSE is good for comparing two clusterings or two clusters 
(average SSE). 

  Can also be used to estimate the number of clusters 
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INTERNAL MEASURES: COHESION AND SEPARATION 

  Cluster Cohesion: Measures how closely related 
are objects in a cluster 

–  Example: SSE 

  Cluster Separation: Measure how distinct or well-
separated a cluster is from other clusters 

  Example: Squared Error 
–  Cohesion is measured by the within cluster sum of squares (SSE)‏ 

–  Separation is measured by the between cluster sum of squares 

–  Where |Ci| is the size of cluster i  

€ 

WSS = (x −mi )
2

x∈Ci

∑
i
∑

€ 

BSS = Ci| |(m −mi )
2

i
∑
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FINAL COMMENT ON CLUSTER VALIDITY 

     “The validation of clustering structures is the 
most difficult and frustrating part of cluster 
analysis.  

     Without a strong effort in this direction, cluster 
analysis will remain a black art accessible only to 
those true believers who have experience and 
great courage.” 

  Algorithms for Clustering Data, Jain and Dubes 
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