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WHAT IS CLUSTER ANALYSIS?

® Finding groups of objects such that the objects in a group
will be similar (or related) to one another and different from
(or unrelated to) the objects in other groups

Inter-cluster
Intra-cluster distances are
distances are maximized
minimized
<0
OCoo

Qoo
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CLUSTERING: APPLICATION 1

Market Segmentation:

Goal: subdivide a market into distinct subsets of
customers where any subset may conceivably be

selected as a market target to be reached with a
distinct marketing mix.

Approach:

Collect different attributes of customers based on their
geographical and lifestyle related information.

Find clusters of similar customers.

Measure the clustering quality by observing buying

patterns of customers in same cluster vs. those from
different clusters.
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CLUSTERING: APPLICATION 2

Document Clustering:

Goal: To find groups of documents that are similar to
each other based on the important terms appearing
in them.

Approach: To 1identify frequently occurring terms in
each document. Form a similarity measure based on
the frequencies of different terms. Use i1t to cluster.

Gain: Information Retrieval can utilize the clusters
to relate a new document or search term to clustered
documents.
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ILLUSTRATING DOCUMENT CLUSTERING

Clustering Points: 3204 Articles of Los Angeles Times.

Similarity Measure: How many words are common in
these documents (after some word filtering).

Category Total Correctly
Articles Placed

Financial 555 364
Foreign 341 260
National 273 36
Metro 943 746
Sports 738 573
Entertainment 354 278
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SIMILARITY AND DISSIMILARITY

® Similarity
— Numerical measure of how alike two data objects are.

— Is higher when objects are more alike.
— Often falls in the range [0,1]

® Dissimilarity
— Numerical measure of how different are two data objects
— Lower when objects are more alike
— Minimum dissimilarity is often O
— Upper limit varies

® Proximity refers to a similarity or dissimilarity
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EUCLIDEAN DISTANCE

Euclidean Distance

dist = E(pk -q,.)°
=

Where n 1s the number of dimensions (attributes) and
p, and g, are, respectively, the k™ attributes
(components) or data objects p and q.

@ Standardization is necessary, if scales differ.
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EUCLIDEAN DISTANCE

point X y
pl 0 2
p3 p4 p2 2 0
[ e p3 3 1
p2 p4 5 1
@
2 3 5
pl p2 p3 p4
pl 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0

Distance Matrix
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MINKOWSKI DISTANCE

® Minkowski Distance is a generalization of Euclidean
Distance i

dist=( Y1 p,~q.1")"
k=1

Where r 1s a parameter, n is the number of dimensions
(attributes) and p, and g, are, respectively, the kth attributes
(components) or data objects p and q.
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MINKOWSKI DISTANCE: EXAMPLES

e r =1. City block (Manhattan, taxicab, L,
norm) distance.

— A common example of this is the Hamming distance,
which 1s just the number of bits that are different
between two binary vectors

® r=2. Euclidean distance

® r— ., “supremum’” (L
distance.

— This 1s the maximum difference between any component
of the vectors

e 2OTmM, L norm)

® Do not confuse r with n, 1.e., all these
distances are defined for all numbers of
dimensions.
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COMMON PROPERTIES OF A DISTANCE

® Distances, such as the Euclidean distance, have
some well known properties.

1. d(p,q)=0 forall pandq and d(p, q) =0 only if
p =q. (Positive definiteness)

2. d(p, q) =d(q, p) for all p and q. (Symmetry)

3. d(p, r)=d(p, q) +d(q, r) for all points p, q, and r.
(Triangle Inequality)

where d(p, q) is the distance (dissimilarity)
between points (data objects), p and q.

® A distance that satisfies these properties is a
metric
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COMMON PROPERTIES OF A SIMILARITY

® Similarities, also have some well known properties.
1. s(p, g@) =1 (or maximum similarity) only if p =q.
2. 8(p, q) =s(q, p) for all p and q. (Symmetry)

where s(p, q) 1s the similarity between points (data
objects), p and q.
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SIMILARITY BETWEEN BINARY VECTORS

e Common situation is that objects, p and g, have
only binary attributes

® Compute similarities using the following quantities

My = the number of attributes where p was 0 and g was 1

M,, = the number of attributes where p was 1 and g was 0O
Mg, = the number of attributes where p was 0 and g was O
M,, = the number of attributes where p was 1 and g was 1

® Simple Matching and Jaccard Coefficients
SMC = number of matches / number of attributes
= M, + M) / (M, + M, +M,;; + M)

J = number of 11 matches / number of not-both-zero attributes values
= (Mn) / (M01 + M1o + M11)
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SMC VERSUS JACCARD: EXAMPLE

p=1000000000
q=0000001001

My, =2 (the number of attributes where p was 0 and q was 1)
M, =1 (the number of attributes where p was 1 and q was 0)
Moo =7 (the number of attributes where p was 0 and q was 0)
M., =0 (the number of attributes where p was 1 and q was 1)
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COSINE SIMILARITY

e If d, and d, are two document vectors, then
cos(d,d,)= (d,*d,)/ |Id,|| |ld,l I, ,
where * indicates vector dot product and | | d | | 1s the length of ¥&tor

/

|A| cos6
@ Example:
AB=[|A]] ||
d,=3205000200 B|| cos@

d,= 1000000102
d,*d,/= 3*1+2*%0+0%0 + 5%0 + 0*0 + 0%0 + 0*0 + 2*1 + 0*0 + 0*2 =5
| 1d, || = (8*3+2%2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0%0)%5 = (42) 05 = 6.481
| 1d,| | = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*%2) 05 = (6) 05 = 2.245

cos(d,, d,) =.3150

Pitagora Theorem

9 9)
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CORRELATION

® Correlation measures the linear relationship between
objects

® To compute correlation, we standardize data objects, p
and q, and then take their dot product

p, = (p, — mean(p))/std(p)

q, = (q, — mean(q))!std(q)

correlation(p,q)=p - q
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VISUALLY EVALUATING CORRELATION

-1.00 -0.90 -0.80 -0.70 -0.60 -0.50 -0.40

-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30

Scatter plots
showing the
similarity
from —1 to 1.

0.40 0.50
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DENSITY

® Density-based clustering require a notion of density

e Examples:
— Euclidean density

¢ Euclidean density = number of points per unit volume

— Probability density

— Graph-based density
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EUCLIDEAN DENSITY — CENTER-BASED

® Euclidean density is the number of points within a
specified radius of the point

® N |
.'.. .
e e
PY -...00000‘... ®

Figure 7.14. lllustration of center-based density.
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APPLICATIONS OF CLUSTER ANALYSIS

® Understanding

— Group related documents
for browsing, group genes
and proteins that have
similar functionality, or
group stocks with similar
price fluctuations

® Summarization

— Reduce the size of large
data sets

Discovered Clusters

Industry Group

-

Applied-Matl-DOWN,B ay-Network-Down,3-COM-DOWN,

C abletron-Sys-DOWN,CISCO-DOWN,HP-DOWN,
DSC-C omm-DOWN,INTEL-DOWN,LSI-L ogic-DOWN,
Micron-Tech-DOWN, Tex as-Inst-Down, Tellabs-Inc-Down,
Natl-Semiconduct-DOWN, Oracl-DOWN,SGI-DOWN,
Sun-DOWN
Apple-C omp-DOWN, Autodesk-DOWN,DEC-DOWN,
ADV-Micro-Device-DOWN,Andrew-C orp-DOWN,
C omputer-Assoc-DOWN,Circuit-City-DOWN,
Compag-DOWN, EMC-C o1p-DOWN, Gen-Inst-DOWN,
Motorola-DOWN, Microsoft-DOWN Scientific-Atl-DOWN

Fannie-Mae-DOWN, Fed-Home-L oan-DOWN,
MBNA-C orp-DOWN,Morgan-Stanley-DOWN

Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP,
Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP,
Schlumberger-UP

Technologyl-DOWN

Technology2-DOWN

Financial-DOWN

O1l-UP

Clustering precipitation
in Australia




NOTION OF A CLUSTER CAN BE AMBIGUOUS

o0 ) ++ *
®e o LIPS ++ o g
o [ o ]
® o [ v @)
o o0 © v ¢ U
o o0 v ¢
How many clusters? Six Clusters
mE A ++ *
E m A ++ *
O A A Ty *oo
m AA A v OO O
N A A v S0

Two Clusters Four Clusters
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TYPES OF CLUSTERINGS

® A clustering is a set of clusters

® Important distinction between hierarchical and
partitional sets of clusters

® Partitional Clustering

— A division data objects into non-overlapping subsets
(clusters) such that each data object 1s 1n exactly one subset

® Hierarchical clustering
— A set of nested clusters organized as a hierarchical tree
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PARTITIONAL CLUSTERING

Original Points

A Partitional Clustering
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HIERARCHICAL CLUSTERING

pl
' p4‘

Hierarchical Clustering

.

pl p2 p3pd

Dendrogram
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CHARACTERISTICS OF THE INPUT DATA ARE IMPORTANT

® Type of proximity or density measure
— This is a derived measure, but central to clustering

® Sparseness
— Dictates type of similarity
— Adds to efficiency

e Attribute type
— Dictates type of similarity

® Type of Data
— Dictates type of similarity
—  Other characteristics, e.g., autocorrelation

® Dimensionality
® Noise and Outliers
® Type of Distribution
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CLUSTERING ALGORITHMS

® K-means and i1ts variants
® Hierarchical clustering

® Density-based clustering
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K-MEANS CLUSTERING

® Partitional clustering approach

® Each cluster is associated with a (center point)

® Kach point 1s assigned to the cluster with the closest
centroid

® Number of clusters, K, must be specified

® The basic algorithm 1s very simple

: Select K points as the initial centroids.

: repeat

1
2
3:  Form K clusters by assigning all points to the closest centroid.
4:  Recompute the centroid of each cluster.

5

: until The centroids don’t change
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K-MEANS CLUSTERING — DETAILS

® Initial centroids are often chosen randomly.
- Clusters produced vary from one run to another.

® The centroid is (typically) the mean of the points in the
cluster.

® ‘Closeness’ 1s measured by Euclidean distance, cosine
similarity, correlation, etc.

® K-means will converge for common similarity measures
mentioned above.

® Most of the convergence happens in the first few
1terations.

—~ Often the stopping condition is changed to ‘Until relatively few
points change clusters’

@ ComplexityisO(n*K*I*d)

—~  n =number of points, K = number of clusters,
I = number of iterations, d = number of attributes
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TWwWO DIFFERENT K-MEANS CLUSTERINGS
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IMPORTANCE OF CHOOSING INITIAL CENTROIDS
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IMPORTANCE OF CHOOSING INITIAL CENTROIDS ...
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EVALUATING K-MEANS CLUSTERS

® Most common measure is Sum of Squared Errors (SSE)
— For each point, the error is the distance to the nearest cluster
—~ To get SSE, we square these errors and sum them.

SSE = i Edistz(mi,x)

2

1.0

x.2)

0.5

- x1s a data point in cluster C,and m; is
the representative point for cluster C,

— Given two clusters, we can choose the oné with the smallest .
error &

— One easy way to reduce SSE 1s to increase K, the number of
clusters

¢ A good clustering with smaller K can have a lower SSE than a
poor clustering with higher K

0.0
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LIMITATIONS OF K-MEANS

® K-means has problems when clusters are of differing
— Sizes
— Densities
— Non-globular shapes

® K-means has problems when the data contains outliers.
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LIMITATIONS OF K-MEANS: DIFFERING SIZES
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LIMITATIONS OF K-MEANS: DIFFERING DENSITY
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LIMITATIONS OF K-MEANS: NON-GLOBULAR SHAPES

15
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Original Points K-means (2 Clusters)

15

CT0T 2unf =gdAMN = 9smo)y Sutuijy ereq




OVERCOMING K-MEANS LIMITATIONS

y
o
iD]_IrLan H
a
E]D o -
G

Original Points K-means Clusters

One solution is to use many clusters.
Find parts of clusters, but need to put together.
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HIERARCHICAL CLUSTERING

® Produces a set of nested clusters organized as a
hierarchical tree

® Can be visualized as a dendrogram

— A tree like diagram that records the sequences of merges or
splits

0.2¢

0.151

0.1t

0.05;
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STRENGTHS OF HIERARCHICAL CLUSTERING

® Do not have to assume any particular number of
clusters

— Any desired number of clusters can be obtained by ‘cutting’
the dendogram at the proper level

® They may correspond to meaningful taxonomies

—~ Example 1n biological sciences (e.g., animal kingdom,
phylogeny reconstruction, ...)
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HIERARCHICAL CLUSTERING

® Two main types of hierarchical clustering

— Agglomerative:
¢ Start with the points as individual clusters

¢ At each step, merge the closest pair of clusters until only one
cluster (or k clusters) left

— Daivisive:
¢ Start with one, all-inclusive cluster

¢ At each step, split a cluster until each cluster contains a point (or
there are k clusters)

® Traditional hierarchical algorithms use a similarity or
distance (proximity) matrix
— Merge or split one cluster at a time
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AGGLOMERATIVE CLUSTERING ALGORITHM
® More popular hierarchical clustering technique
® Basic algorithm is straightforward

Compute the proximity matrix
Let each data point be a cluster
Repeat
Merge the two closest clusters
Update the proximity matrix
Until only a single cluster remains

® Key operation is the computation of the proximity of two
clusters

—  Different approaches to defining the distance between
clusters distinguish the different algorithms

Similarity?
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HIERARCHICAL CLUSTERING: MIN

0.2t

0.15¢-

0.1F

0.05¢-
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HIERARCHICAL CLUSTERING: TIME AND SPACE REQUIREMENTS

O(N?) space

O(N?®) time 1n many cases
— There are N steps and at each step the proximity matrix
(size: O(N?)) must be updated and searched

— Complexity can be reduced to O(N? log(N) ) time for some
approaches
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HIERARCHICAL CLUSTERING: PROBLEMS AND LIMITATIONS

® Once a decision 1s made to combine two clusters, 1t
cannot be undone

® No objective function is directly minimized

® Different schemes have problems with one or more of
the following:
— Sensitivity to noise and outliers

— Difficulty handling different sized clusters and convex
shapes

— Breaking large clusters
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DBSCAN

® DBSCAN is a density-based algorithm.

Density = number of points within a specified radius
(Eps)

A point 1s a core point if it has more than a specified
number of points (MinPts) within Eps

¢ These are points that are at the interior of a cluster

A border point has fewer than MinPts within Eps, but is
in the neighborhood of a core point

A noise point 1s any point that is not a core point or a
border point.
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DBSCAN: CORE, BORDER, AND NOISE POINTS
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DBSCAN ALGORITHM

@ Eliminate noise points

® Perform clustering on the remaining points

Algorlthm 8.4 DBSCAN algorithm.

. Label all points as core, border, or noise points.

Eliminate noise points.

Put an edge between all core points that are within Eps of each other.
Make each group of connected core points into a separate cluster.

Assign each border point to one of the clusters of its associated core points:

o =

U = W

B0z oung - 440 - osion S ereq

Complexity is O(n’) in the worst case. With low dimensionality
and good data structure can reduce to O(m log m)



DBSCAN: CORE, BORDER AND NOISE POINTS

Data Mining Course - UFPE - June 2012
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WHEN DBSCAN WORKS WELL

Data Mining Course - UFPE - June 2012

| ..c.%ﬁ%ﬁ%&.&:ﬁ - ...
- e Y
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Clusters

Original Points

« Can handle clusters of different shapes and sizes

* Resistant to Noise



WHEN DBSCAN DOES NOT WORK WELL

Original Points

» Varying densities
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CLUSTER VALIDITY

® For supervised classification we have a variety of
measures to evaluate how good our model is
— Accuracy, precision, recall

® For cluster analysis, the analogous question 1s how to
evaluate the “goodness” of the resulting clusters?

® But “clusters are in the eye of the beholder”!

® Then why do we want to evaluate them?
— To avoid finding patterns in noise
— To compare clustering algorithms
— To compare two sets of clusters
— To compare two clusters
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DIFFERENT ASPECTS OF CLUSTER VALIDATION

e Determining the clustering tendency of a set of data, i.e., distinguishing
whether non-random structure actually exists in the data.

1. Comparing the results of a cluster analysis to externally known results,
e.g., to externally given class labels.

e Evaluating how well the results of a cluster analysis fit the data without
reference to external information - only the data

1. Comparing the results of two different sets of cluster analyses to
determine which is better.

2. Determining the ‘correct’ number of clusters.
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INTERNAL MEASURES: SSE

® Clusters in more complicated figures aren’t well separated

e Internal Index: Used to measure the goodness of a clustering
structure without respect to external information

— Sum of Square Error

® SSE is good for comparing two clusterings or two clusters
(average SSE).

® Can also be used to estimate the number of clusters

1

® & M O N » O

SSE
O = N ®W A OO N ® © O
-
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INTERNAL MEASURES: COHESION AND SEPARATION

® Cluster Cohesion: Measures how closely related
are objects in a cluster
- Example: SSE

® Cluster Separation: Measure how distinct or well-
separated a cluster is from other clusters

e Example: Squared Error
— Cohesion is measured by the within cluster sum of squares (SSE})

WsS= ¥ ) (x-m,)

1 xeC.
— Separation is measured by the between cluster sum of squares

BSS=Y|C,(m~m,)’

Where |C|| 1s the size of cluster 1
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FINAL COMMENT ON CLUSTER VALIDITY

“The validation of clustering structures is the
most difficult and frustrating part of cluster
analysis.

Without a strong effort in this direction, cluster
analysis will remain a black art accessible only to
those true believers who have experience and
great courage.”

Algorithms for Clustering Data, Jain and Dubes
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