org.lsmp.djep.groupJep.interfaces
Interface RingI

All Superinterfaces:
AbelianGroupI, GroupI
All Known Subinterfaces:
FieldI, IntegralDomainI
All Known Implementing Classes:
AlgebraicExtension, BigReals, ExtendedFreeGroup, FreeGroup, Integers, Quaternions, Rationals, Reals, Zn

public interface RingI
extends AbelianGroupI

Defines the operations on a ring, i.e. an abelian group under + with a closed * operator and * distributitive over +.

Author:
Rich Morris Created on 05-Mar-2004

Method Summary
 java.lang.Number getONE()
          Get multiplicative identity i.e. 1.
 java.lang.Number mul(java.lang.Number a, java.lang.Number b)
          Returns the product of two numbers, a*b
 
Methods inherited from interface org.lsmp.djep.groupJep.GroupI
add, addStandardConstants, addStandardFunctions, equals, getInverse, getNumberFactory, getZERO, isConstantPoly, sub, valueOf
 

Method Detail

mul

java.lang.Number mul(java.lang.Number a,
                     java.lang.Number b)
Returns the product of two numbers, a*b


getONE

java.lang.Number getONE()
Get multiplicative identity i.e. 1. Strictly speaking a ring need not have a mul indentity. However most useful ones do, and they are not all integral domains.



http://www.singularsys.com/jep Copyright © 2007 Singular Systems